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1 PROJECT OVERVIEW

1.1 Introduction

This report summarizes the FY'90 technical developments of the NESSUS system for component

risk assessment for the Probabilistic Structural Analysis Methods for Select Space Propulsion

Components contract. The technical efforts focused on a new automated reliability algorithm, an

extension of the existing advanced mean value probabilistic algoriOun, resistance models which include

state-of-the-an models, multi-factor interaction model, and a probabilistic constitutive relation model,

and a risk module that can compute the risk with respect to cost, performance, and a user-defined criteria.

The team for the FY'90 effort consisted of the following individuals and organizations:

SwRI: Dr. T.A. Cruse

Mr. H.R. Millwater

Mr. B.H. Thacker

Dr. S.V. Harren

Dr. Y.-T. Wu

Dr. Y. Tomg

Dr. R. Aithal

Ms. ZP. Buckingham

Rocketdyne: Dr. K.R. Rajagopal

University of Arizona: Prof. P.H. Wirsching

1.2 Summary of FY'90 Accomplishments

The principal focus of the component reliability subtask was the development and implementation

of a new reliability algorithm. This algorithm is described in Chapter 2. In addition to a new reliability

algorithm, the Advanced Mean Value algorithm present in NESSUS 4.2 was automated. This feature

is also discussed in Chapter 2.

The component resistance subtask focused on two efforts, NESSUS coding and resistance model

formulation. The NESSUS code was enhanced so that very generalresistance models, even those which

involve nonlinear combinations of finite element results and material resistance variables, can be

analyzed in a straightforward manner. The new capabilities are documented in Chapter 3.

A number of resistance models are formulated according to the statement-of-work by SwRL

Rocketdyne, and the University of Arizona. A summary of the investigated and implemented models

is given in Chapter 3.

The component risk subtask focused on the development and implementation into NESSUS of

algorithms to compute the structural risk. The risk with respect to cost, performance, and a user-defined

criteria can be computed by NESSUS. This capability is discussed in Chapter 4.

Various supporting technology was developed in FY'90 in support of component reliability,

resistance, and risk, and is discussed in Chapter 5. A fast convolution method for FPI was developed.

A probabilistic interface was developed around the BEST3D boundary element program and the expert

system help screens were enhanced.



Theabove-mentionedtechnologyis containedinNESSUS5.0. The rel_ notes for NF_SUS

5.0 are contained in Appendix A.

1.3 Future Effort

The FY'91 effort will focus on system risk assessment. The enhancements to NESSUS in FY'90

for component reliability, resistance, risk, and supporting technology lead directly into the FY'91 work

on system reliability.

1.4 Publications

The following papers were presented and/or published during FY'90.

I. "Application of Probabilim'c Structural Modeling to Elastoplastic and Transient Analysis,"

T.A. Cruse, H.R. Millwater, S.V. Harren, and J.B. Dias, presented at IFIP WG 7.5 Working

Conference, Berkeley, California, March 26-28, 1990 (Proceedings to be published by

Springer-Verlag).

2. "Application of the Probabilisfic Approximate Analysis Method to a Turbopump Blade

Analysis," B.H. Thacker, R.C. McClung, and H.R. Millwater,

AJAA/ASME,/ASCFJAHS/ASC 31st Structures Stmcun'al Dynamics and Materials

Conference, Long Beach, California, 2-4 April 1990.

3. "Computational Methods for Pmbabih'ty of Instability Calculations," Y.-T. Wu and O.I-L

Burnside, AIAA/ASME/ASCE/AHS/ASC 31st Structures, Structural Dynamics and

Materials Conference, Long Beach, California, 2-4 April 1990.

4. "Probabilistic Analysis of a Materially Nonlinear Structure," H.R. Millwater, Y.-T. Wu,

and A.F. Fossum, AIAA/ASME/ASCE/AHS/ASC 31st Structures, Structural Dynamics

and Materials Conference, Long Beach, Califomia, 2-4 April 1990.

5. "Probability Approach for Strength Calculations," C.C. Chamis and T.A. Cruse, AGARD

Structures and Materials Panel Workshop, 70th SMP Meeting, Sorrento, Italy, April 2-6,

1990.

6. "Probabilistic Structural Analysis, Reliability and Risk of Critical SSME Components,"

T.A. Cruse, C.C. Chamis, and K.IL Rajagopal, presented at 1990 Conference on Advanced

Earth-to-Orbit Propulsion Technology, Huntsville, Alabama, May 15-17, 1990.

7. "SvmcmralReliabillty and Resistance Modeling with the NF_SUS Software System," S.V.

Harren, H.R. Millwater, and B.H. Thacker, presented at the 26th AIAA/SAE/ASMFJASEE

Joint Propulsion Conference, Orlando, Florida, July 16-18, 1990.

8. "Probabilistic Strucumfl Analysis Methodology and Applications to Advanced Space

Propulsion System Components," T.A. Cruse, K.R. Rajagopal, and J.B. Dias, presented at

the Symposium on Computational Technology for Flight Vehicles, Washington, D.C.,

November 5-7, 1990.
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2 COMPONENT RELIABILITY

This task focused on developing and implementing the reliability algorithms in NESSUS. The

existing advanced mean value algorithm (AMV) p-level procedure was enhanced, and a new AMV

based z-level procedure was developed. The p-level algorithm is used to compute the response value

corresponding to a specified probability. The p-level procedure is most useful when computing the

entire CDF. The z-level algorithm is used to compute the probabih'ty corresponding to a specified

response, i.e., the structural reliability.

2.1 AM'V+ p-level Procedure

The AMV+ p-level procedure is used to compute the response corresponding to a specified

probability, orp-level. In NESSUS, the method is used when points along the entire range of the CDF

are to be computed or the response at specified probabil/ty levels is to be computed. This procedure is

selected by setting *ANALYTYPE = O or 2 in the FPI input section of PFEM.

Table 2.1 gives a schematic of the method, along with the number of finite element solutions that

are required to perform a first order prohabilistic analysis. In Table 2.1, N is the number of input

random variables and M is the number of p-levels. MVFO refers to "mean value first order," and

AMVFO refers to "advanced" MVFO. In an MVFO anal)sis, (N+I) sensitivities are computed and

used to construct a linear pe_'ormance fun_oa (g-function) about the mean values of the random

variables. In step 2, an update (or "move") is performed, which entails a finite element solution, to

update the response value at each of the M probability levels.

A fully automated AMV+p-level algorithm has been implemented in NESSUS. The user inputs

an allowable number of iterations and a convergence tolerance. At each p-level, NESSUS continues

iteration until either: i) the allowable number of iterations is reached, or ii) the relative change in z is

within the convergence tolerance.

2.2 AMV+ z-level Procedure

The AMV+ z-level procedure is used to compute the probability corresponding to a specified

response or z-leveL In NESSUS, the method is primarily used for reliability calculations, where p must

be calculated for a specific value of z.

The key to efficient reliability analysis is the ability to compute quickly the location of the most

probable point (MPP). To reduce the number of finite element solutions required while searching for

the MPP, an algorithm has been devised and implemented to estimate a good starting MPP. Once the

estimate is obtained, a straightforward iteration procedure is used to converge on the desired MPP. It

should be noted that the sole purpose of the algorithm used to obtain the starting MPP is to minimize

the number of finite element solutions, and can be modified or adapted as experience warrants.

The AMV+ z-level procedure works in "u-space," which is related to p by 2p = 1 + erf(u/_/-2), and

"err" is the error function. An outline of the AMV+ z-level procedure is given below.

A. Compute an initial est_nate for the most probable point.

I. Estimate the probability level u using u = az2+ bx+c, where a, b, and ¢ are determined from:

i) u at the mean value of z,

ii) Oul'Jz at the mean value of z, and



iii) the AMV resuk (move) at u = +5 or -5, depending on whether the z-level is greater

than or less than its median, respectively.

2. From the probability level u computed in Step A-l, compute the MPP using FPI and the

response using a move (AMV procedure).

3. Compute a new estimate of the probability level u using u = az2+ bx + c, where a, b, and

c are determined from:

i) u at the mean value of z,

ii) u at the MPP obtained in Step A-2, and

iii) the AMV result (move) at u = +5 or -5, depending on whether the z-level is greater

than or less than its median, respectively.

4. From the probability level u computed in Step A-3, compute the starting MPP using FPL

B. Given a starting u and MPP:

i) obtain sensitivities at the MPP, and

ii) estimate an improved u and MPP for the input z-level using FPI.

C. Repeat Step B until either:.

i the allowable number of iterations is reached or

ii the relative change in u is less than the convergence tolerance.

A significantingredientof thesetwo algorithms is that NESSUS will automaticallyiterate until

either a maximum number of iterations is reached or a user-specified convergence tolerance is satisfied.

For thep-level algorithm, the convergence is based on the computed z between two successive iteration

steps, i.e., convergence is achieved when [(z,-z,_O/z,[ <tolerance. For the z-level algorithm,

convergence is achieved when [(ut-u___)/u_[ < tolerance. With this procedure even highly nonlinear

problems can be analyzed with confidence.

As an example, consider a thick cylinder under internal pressure with a perfectly plastic material

model. This problem was shown to have a nonlinear response in the paper presented at the 31st SDM

conference, "Probabilistic Structural Analysis of a Materially Nonlinear Strocmre," by H. Millwater, et

al. The computed CDF using the AMV+ p-level algorithm is shown in Figure 2.1. Because of the

nonlinear response function, the AMV move was not sufficiently accurate, 1st iteration was necessary.

However, in this problem, an analytical solution was known which will not be known in generaL Thus,

in general, the engineer will not know when the solution is sufficiently accurate. With the new hvrafion

capability, NESSUS will automatically iterate until convergence. Figure 2.2 shows the comparison of

the converged NESSUS solution with Monte Carlo. Figure 2.3 shows the probabilistic sensitivity factors

for this problem. NESSUS iterated until convergence occurred after the second step of iteration I.

The z-level algorithm was also used to analyze this problem. Table 2.2 shows the results for several

iterations at several z values. The computed probability at each z level corresponds with the p-level

results.

These algorithms have also been exercised thoroughly in the validation problems located in

Appendix C.
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Iteration

0

0

1

Table 2.1

Schematic of AMV+p-levels Procedure

Step Analysis Number of Finite

2

1

MVFO

AMVFO (Move)

First Order

Element Solutions

N+I

+M

+(N+I) x M

1 2 Move +M

2 1 First Order +(N+I) x M

2 2 Move +M

Table 2.2

Elastic-Plastic Cylinder

PFEM z-levelValidationProblem

:ievet
mvfo

-_581 -iI.2646

-15825. -B.6754
-14018. -6.0063
-12273. -3.3547
-i0897. -1.2257
-3573.8 3.8713
-_031.2 1.7340
-4524.6 2.5474
-_016.3 3.3640

• _mgtea so U = -5

U

_uaQ es_ 1
-0.4841E+01
-0.4960E+01
-0.4274E+01
-0.2834E+01
-0.I161E+01
:.9035E+00
:.1896E+01
3.2903E*01
2.3992E+01

qua_ eat 2
"-0.5744E+01
-0.4765E+01
-0.3572E+01

-0.2351E+01
-O.II20E+OI
3,9496E÷00
:.2025E*01
:.2903E*01
3.4103E÷01

ist iter
-0 4958E+01
-_ 3998E+01
-0 3031E+01
-0 2117E+01
-0 1081E*01

: 9259E+00
: 1941E÷01
2 2955E*01
3 3971E+01

2nd iter
-0.4957E+01
-_.3997E+01
-0.3033E+01
-0.2058E+01
-3.1071E÷01
:.9308E+00
2.1941E+01
:.2955E*01

:.3971E÷01

3 icec
-0.4957E+01
-0.3997E+01
-0.3033E÷01
-0.2058E+01
-3.1067E*01

:.9304E+00
_.!941E*CI
2.2955E*01
=.3971E+01

S itec
-'_ 4957E+01
--; 3997E+01

-o 3033E+01
-0 2058E÷01
-0 I067E÷01

: 9304E+00
: !941E+01
: 2955E+01
: 3971K+01
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3 COMPONENT RESISTANCE

3.1 Introduction

This section presents the work accomplished under Task V-B "Component Probabilistic Structural

Resistance." The objective of Task V-B is to adapt/modify the computer codes (NF_,SSUS) to simulate

computafionally the uncertainties in component stmctm'al resistance.

3.2 Status

Structural resistance modeling has been fully integrated in the NESSUS computer program. This

capability was achieved through several key developments:

• A completely general facRity for modeting structural resistances was integrated within the

framework developed under Task V-A for computing strucawal reliability.

• A new data processor was developed and integrated into NESSUS that allows NESSUS/FEM

results such as stresses, strains, and displacements to be used in defining other response measures

such as maximum principal stress, plastic strain range, or RMS displacement.

• A new random variable type "COEF' (for coefficient) was added to NESSUS/FEM. This new

random variable provides the capability for modeling probabilistic material damage, which is

defined in terms of some number of COEF random variables.

• Whenever possible, options were added to allow the user to provide custom resistance models,

post-processing options, etc., via user-programmable subroutines.

• The input format and reader were completely rewritten to simplify and streamline the additional

input required.

The following sections provide a more detailed description of the work completed under this task.

The overall approach to resistance modeling in NESSUS is described in Section 3.3, followed by

a summary of the required code su'ucum_ changes in Section 3.4. A significant amount of research was

performed to determine what types of resistance models should and could be incorporated within the

computational framework of NESSUS. From this work, a database of resistance (or reliability) models

was compiled. In Section 3.5.1, this database is categorized and described. Models based on simple

limiting values of su-ucutral response are described in Section 3.5.1.1. Models based on material strength

are described in Section 3.5.1.2, and models that attempt to account for material degradation due to

damage are described in Section 3.5.1.3. Next, in Section 3.5.2, the multi-factor interaction (MFI)

model is described, and a formulation for the probabillstic modeling of an austenitic stainless steel is

presented in Section 3.5.3. A model for defining a random stress-strain curve in NESSUS/FEM is

described in Section 3.6, and several demonstration problems are presented in Section 3.7.

3.3 Approach to Structural Refiability Computation Using NESSUS

The reliability of a structure can be viewed as a measure of the ability of the structure to perform

as designed. However, because uncertainties in the design process are unavoidable, a probabilistic

approach to estimating the chance of non-performance is needed. Probably the simplest statement of

performance for a structure is that the available strength of the structure be adequate to withstand the

maximum loads acting on the structure. This performance can be stated mathematically [1] as



ps=e(S-R _0) 0.1)

where Ps is the probability of safety (reliability), S is the loading or "stress" variable associated with

the structure, and R is the strength or "resistance" measure of the struclme. In general, most structures

will be required to meet more complex performance measures.

The probabilistic analysis methods used in NESSUS are based on the concept of a limit-state [2].

A limit.state function g(X) is formulated in terms of the input random (i.e., engineering) variables, X.

The limit-state function, also refened to as the performance function, is written such that g(X) = 0 defines

the boundary between the "failure" and "safe" regions. In other words, &(X) < 0 indicates f_-e and

g(X) • 0 indicates safety.

To describe the new approach, it is useful to review the methodology used in the earlier versions

of NESSUS (i.e., < 4.8). Previously, a structural response _mction Z = Z(X) was defined either by a

numerical method such as NESSUS/FEM or by a closed-form expression. In a probabilistic structural

response analysis, the performance function was fornmlated as S(X)=Z(X)-Z_=O, where 7.ocan be

thought of as a li_.g value of Z. Point probability estimates are made usin8 specific limits for

and the cumulative distribution function (CD_ is olxained by varying 7.o.

The approach for defining more gmend performance functions in lqESSUS is straightforwanL

Imte._ of interpreting Z = Z(X) as being solely the _ response, its definition is extended to

include the effects of both the response and material/resisumce model. SpecificaUy, Z(X) is formulated

to represent the overall response function. In a component strucnh-al reliability analysis, Z(X) will be

a function to predict a particular failure mode. Note that the probabllistic structural response analysis

available in previous versions of NESSUS is a subset of this approach.

3.4 Code Structure

NESSUS/PFEM, as in past versions of NESSUS, is the main driver routine in NESSUS 5.0. The

input format for PFEM in NESSUS 5.0 has been completely rewritten to be more organized and

user-friendly. In particular, all input is now column and case independent and is completely keyword

driven. A number of new keywords have been added reflecting new code capabilities. Appendix A

gives a detailed presentation of the NESSUS 5.0 code structure.

3.5 Combined Stress and Resistance Modeling

Material/resiramce modeling capabih_ues have been researched and implemented in the NESSUS

Software System and are grouped as follows: (1) state-of-the-art (SOA) models, (2) a multi-factor

interaction relation, and (3) a probabilistic constitutive relationship. ALl of the models are integrated

with the automated Advanced Mean Value Iteration (AMV+) algorithms described in Chapter 2.

Resistance Model Research

Measures of structural resistance vary from analysis m analysis. Consequendy, it would be

inefficient to implement a large number of resistance models. The approach taken in this task was to

(I) develop a code structure that offered the flexibility of defining resistance models through

user-programmable routines and (2) include a broad cross-section of"pre-coded" widely used resistance

models that could be used both for design purposes and as examples for the engineer to use in defining

more specific resistance models.

I0



A considea-ableportionoftimewas devotedtosurveyingthedifferenttypesofresistancemeasures

thatwould be most applicabletothespacepropulsionindustryneeds. SouthwestResearch Instinm=,

The University of Arizona, and Rocketdyne all participated in this research. By performing this research

early in the fiscal year, the types of data were identified, and were subsequently used in the design of

the new PFEM code.

A database of resistance models was compiled as a result of an extensive review of classical

resistance measures (University of Arizona Report, Appendix B.I) and resistance models cun_tly

being used in the liquid rocket engine industry (Rocketdyne Report, Appendix B.2). A summary table

of the more commonly used measures of resistance is given in Table 3.1. The reader is referred to the

respective appendix for complete details.

The models listedinAppendix B.I aregrouped intothefollowingcategories:

• Stress-Based Fatigue Life Prediction Models

• Strain-Based Fatigue Life Prediction Models

• Fracnn_ Mechanics Crack Growth Models

• High Temperature Low Cycle Fatigue Models

• Linear Elastic Fracture Mechanics Resistance Models

• Fatigue and Creep Resistance Models

Within each category, a number of models are presented along with a discussion of modeling

approaches, statistical input considerations, and reliability analysis recommendations. As a result, k

should be a straightforward task to incorporate a model, or some variation, from this database into the

NESSUS 5.0 user-programmable routines.

3.5.1 State.of.the-Art Models

The NESSUS state-of-the-art material/resistance models are categorized into three groups: (_

design factor models, (ii) material strength models, and (iiz_ material degradation models.

II
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3.5.1.1 Design Factor Models

Design factor models are traditional structural design factors, or more simply, limiting conditions.

(A probabflistic analysis using a non.random design factor would be termed a probabilistic structural

response analysis, described earlier in Section 1.3.) Example design factors include deflections, natural

frequencies, and stresses. In NESSUS 5.0, design factors themselves can be random functions, and

could be thought of as the resistance curve.

3.5.1.2 Material Strength Models

Material strength models model the uncertainty associated with the ability of the material to "resist"

its loading. Typical material strength measures include yield stress, fractm-e toughness, and elongation.

3.5.1.3 Material Damage Models

Material damage models attempt to consider the effects of cmnulative material damage and may

or may not affect the structural response, the choice being dependent on the particular model used.

Examples of material damage models include low cycle and thermomechardcal fatigue, crack growth,
and stress corrosion.

3.$.2 Multi-Factor Interaction Relation

The Multi-Factor Interaction (MFI) relation [3,4] models material degradation by using a series

product equation fitted to experimental or assumed data. A single term is used to describe each primitive

variable (stress, temperature, cycles, etc. ). The general form of the MFI relation is

M, . (A_,-A, I t= ,_,_A-_-A,. (3.2)M,__

where A_, At, and Aio are the ultimate, current, and reference values of a primitive variable, a_ is the

value of an empirical constant for the i'* primitive variable, n is the number of primitive variables

considered, and Mp and Mp, are the current and reference values of the material property. As seen, the

effect of each primitive variable on the current material property varies from 1.0 (no effect on strength)

to 0.0 (complete loss of strength) times the reference value of the material property.

3.5.3 Probabilistic Constitutive Relation

The goal of this research was to develop simplified relations to describeprobabilistic material

behaviorin terms ofmicromechanical parameters. Although this approach is more difficult to formulate

than the macromechanical formulations discussed earlier and is material dependent, it can provide

valuable information regarding what drives basic randomness in material properties and behavior.

A formulation for the probabilistic behavior of a polycrystalline austenitic stainless steel has been

formulated. A complete description is given in Appendix B.3. In this presentation, the modeling and

behavior of the anstenitic stainless steel is broken down into (1) uniaxial stress-strain behavior, (2) low

cycle fatigue response, (3) high cycle fatigue response, (4) crack growth behavior, and (5) creep rupture

behavior. Within each category, the basic behavior is developed in terms of micromechanical parameters

such as grain size, constituents, and porosity. Recommendations are also made for the selection of

random variables.

15



3.6 Random Stress-Strain Curve Model

An imponaut capabih'ty was implemented in NESSUS for modeling the scatter found in most

sucss-straln curve data. The strcss-suain curve model is expressed as a function of seven (random)

engineering parameters: Young's modulus, yield stress, initial plastic hardening slope, ultima_ stress,

su'ain at ultimate, Poisson's ratio, and a parameter governing "mixed" hardening. These parameters are

in general correlated and non-normally distributed. A method has been formulated and coded into

NESSUS to perturb consistently the stress-strain curve inputs to NESSUS/FEM. A detailed discussion

of this model along with an example problem is presented in Appendix B.4.

3.7 Demonstration Problems

To demonstrate the new capabih'ties offered in NESSUS 5.0, several demonstration problems are

presented. Here, only a summary of each problem is given, with details given in Appendix C. The

summary includes a discussion of the options used, which particular resistance model is employed, and

any spec/al features that are exercised. In all cases, the automated AMV+ algorithms are used. Moreover,

each problem is executed to completion with a single computer nm and input deck.

3.7.1 Displacement Response of a Tilted Beam

In this demonstration, the response is the displacement interference between the tip displacement

8 of a beam, tilted at a 30° angie from tbe x-axis, and adisplacemont limit 8o, which has some un_

associated with it. This problem provides a demonstration of a simple design factor model (Section

3.7.1), where the end response of the beam is the "suess" variable, and the (uncertain) limiting response

is the "resistance" variable. Another important aspect exezcised in this problem is the transformanon

of displacements into another coordinate system during the course of the analysis. A complete write-up

is provided in Appendix C.I.

3.7.2 Buckling Example

This example demonstrates the computation of structural reliability with respect to buckling limits.

The solution procedure is similar to that described in Section 3.7.1. A complete write-up is provided

in Appendix C.2.

3.7.3 Stress Response of a Circular Disk

Here, a circular disk is analyzed with two equal and opposite forces P acting along a diameter.

Failure is assumed when the maximum compressive stress, o, due to the loads exceeds some limiting

stress oo. Therefore, the probability of failure is given by P/=P[_<o]. Once P/is computed, the

reliability is computed as I-P/. This is a demonstration of a material strength resistance model (Section

3.5.1.2), where Oois the uncertain failure or yield stress. A complete write-up is presented in Appendix

C.3.

3.7.4 Fatigue Life of a Three Point Bend Specimen

In this demonstration, the reliability of a three point bend specimen against failure by fracture is

computed. Failure is assumed when the computed number of cycles to failure N! is less than the design

life No, where N/is computed using a simple Paris relation to describe the crack growth. This

demonstration problem provides an example of a material damage resistance model (Section 3.5.1.3).
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Anotherimportant aspect demc_u'amd in this problem is the use of both "FEM" and "nen-FEM" random

variables, respectively termed "computational" and "explicit," in NESSUS. (See the NESSUS 5.0

Release Notes in Appendix A for a more detailed explanation.) Examples of computational random

variables include the loading and beam dimensions. Examples of explicit random variables include the

initial crack length and the Paris exponent. A complete write-up is presented in Appendix C.4.

3.7.$ Elastoplastic Low Cycle Fatigue Life of a Rectangular Plate

Here, the probabilistic life of a rectangular plate is analyzed considering damage caused by low

cycle fatigue. The Multi-Factor Interaction (MFI) relation is used in the analysis to degrade the initial

yield stress as a function of the thermal fatigue cycles and temperature. Important aspects in the

demenstratien include (I) the use of both computational and explicit random variables to construct the

performance function (in this case, N/), (2) the automatic processing of 50 increments of stress and

plastic strain to compute mean stress and plastic strain range, (3) the use of COEFFICIENT random

variables in NESSUS/FEM to track the random parameters in the MFI model, and (4) the inclusion of

material damage during the course of the finite element calculations via the MYI relation. A complete

wrim-up is presented in Appendix C.5.
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4 COMPONENT RISK
A riskmodule has been added to NESSUS, called NESSUS/R/SK, which will compute the risk

with respect to cost, performance and a us_-defmed criteria. RISK can be run stand-alone or in

conjunction with PFEM. Analysis with PFEM is fully automated from a single input file.

4.1 Cost Algorithm

Risk with respect to cost is computed using the formula

Risk/Cost = Co(x) + Pt(x) * C(x) + (1-Pf)*NC(x)

where x is the allowable response in a reliabirm/ analysis such as stress, _sp__ cycles m fafl_'¢,

Co is the initial cost as a function of x, Pf is the probability of failure as a function of x, and NC(x) is

the probability of non-failure as a function ofx. The Pt(x) curve may be the CDF computed by NESSU$.

However, in general, x could be any design parameters including non-random variables.

The four functions, P_x), Co(x), C(x), and NC(x), are defined with appropriate keywords defined

below. The failure function, Pt(x), is defined in table form using the *XPF keyword. The three cost

functions, Co(x), C(x), and NC(x) are defined using the *CFUNC keyword. The XPF and CFUNC x

values do not have to coincide. The output points, xt, at which the risk is to be computed are defined

with the *XCOUT keyword. The output points do not have to coincide with the failure function or cost

function points. RISK will linearly interpolate the failure function and cost function values to use in

the equation for risk. However, no extrapolation is allowed; therefore, the output points must lie within

the failure function and cost function data.

Example:

The user has computed a Pf flmctiorl which is the probability of failure of a structure as a function

of a member area, A. Thus, x is the member area A. (Note, in this example, x is not a response.) The

initial costs are assumed to vary linearly with A. The cost of a failure is assumed to be independent of

A, thus, the cost function, is assumed to be constant with A. The cost of non-failure is also assumed to

be constant with A although at a far less magnitude than the cost of failure function. The user desires

the risk at a number of points between the areas 0.1 and 1.0.

The input file would look like:

*RISK to run risk stand-alone, start file with *RISK

C conm_nts are allowed

C

C define the probability of failure function

C five points will be used

*XPF

0.05

0.3

0.5

0.7

1.0

*END

C

C

*TABL 5

.999

.980

.950

.925

.9

indenting is allowed

define cost functions
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C three points will be used

*COST

*CFUNC 3

0.12.0 50. 1.0

0.5 3.11 50. 1.0

1.0 4.0 50. 1.0

*E_

C

C define the output points

C (areas for which risk

C ten points are used

*XCOUT I0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

*END

C end risk file

*E_

is to be computed)

4.2 Performance

A second analysis method in RISK is based on performance. In this approach, the risk with

respect to performance is adjusted by changing the primirlve random variables to meet a user-specified

probability of failure a_ user-specified design values x. This is, in essence, pan of the design process.

The input requirements are the Pf function, which can be computed automancally by PFEM, the

random variables s_istics and probabilistic sensitivities, and the design requirements. The Pf funclion

is input with the *XPF keyword as before. The random variable statistics and probabilisti¢ sensitivities

are input with the *RVDEFI keyword. The design requirements are input under the

*PERFORMANCE keTword by using the *DREQ and *DVAR keywords. NESSUS/RISK will compute

the necessary changes in the random variable means and standard deviauons needed to meet the

requirements. Each random variable will be adjusted independent of the others, and the mean and

standard devi_on are adjusted independently.

The algorifluns used in RISK are described in Appendix C (by T. Tomg and H. MiUwater) of the

October 1990 PSAM monthly report.
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Assumptions:

The user should be aware of the assumptions involved in the implemented algorithms. First, for

nonlinear functions and non-normal distributions, the computed design changes are only a first order

estimate. An iterative process is needed for an accurate solution as out.fined in the technical write-up.

Secondly, the probabilistic sensitivities are assumed constant, whereas, in general they will vary over

the range on the failure function. It is assumed that when utilizing RISK/Performance the user will be

focusing on a specific area of the failure function, e.g. left tail and the probabilistic sensitivities will

be approximately constant. Thirdly, the technical write-up details an algorithm for a variety of

non-normal distributions. In this version of NESSUS/RISK, a normal distribution is assumed for aLl

random variables.

Example:

This problem has two random variables, xl, x2 with statistics

ttl= 25. oi = 4. normal distribution

tt_= I0. oI = 3. normal distribution

and probabilistic sensitivity factors

=-0.8

c_ =0.6

The failure function is defined by two points in the left tail,

x - 1 Pf = 1.35E-3

X=2 Pf=O.l

The design requirements are:

Pf = 2.33E-4 at x = I

and

Pf= .001atx = 1.5

Both the mean and standard deviation will be changed independently to meet the design requirements

if needed.

The input file would look like:

*RISK

*PERFORMANCE

C

C

*END

C

*XPF

*END

*DREQ 2 two points are requested 1.0 2.33E-4

2.0 0.001

*DVAR

*TABLE

1.0

2.0 0.1

both mean and sigma to be varied

BOTH

same are for cost

2

1.35E-3

two points

2O



C

C

C

C

*RVDEFINE

*END

C

C

*END

define random variables

note: presently all ran vats

*DEFINE

25.

-0.8

*DEFINE

10.

0.6

1

4. NORMAL

2

3. WE IBULL

assumed normal

end risk input

4.3 USER-Defined Risk Criteria

An option for a user-defined criteria for risk is provided through a user-written subroutine,

USRRSK. The probability of failure function and the random variable statistics can be used with this

option.

4.4 SSME Risk Research

Rocketdyne performed a risk and cost model survey of SSME hardware. The report is enclosed

in Appendix D.
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$ SUPPORTING TECHNOLOGY

5.1 FPI Enhancements

To support accurate and fast su'ucuu_ reliability analysis, an improved fast pmbabil_ analysis

method was developed. This improved me_od combines the fast probability integration concept, the

convolution theorem, and the fast Fourier u-ausform technique. The general procedure of this fast

convolution method (FCM) consism of the following steps: (1) identify the most probable point of a

state, (2) establish a quadratic surface around the most probable point, (3) mmsform the quadratic

surface to a linear surface, and (4) apply a fast Fourier mmsform technique m provide a fast convolution

solution. Derailed discussions of this methodology and test examples are contained in Appendix E.

The method can solve previously encountered numerical problems associated with highly

non-normal distributions or very large coefficient-of-variation dis_bufions. Also, the method is more

accurate than the previous fast probability integration (FPI) method. The following example represents

one of the problems for which the normal u-ansformafion distorts the original limit state (in the X-space)

drastically such that the _ state cannot be well-approxima_i by a second-degree polynomial in the

wansformed u-space. As a result, the standard fi_-order reliability method (FORM) and the

second-order reliability method (SORM) may produce significant errors.

Example:
The g-func6on is:

g -- R-S

where

R - Lognormal (mean = 20; Coy = 0.25)

and S has a bi-modal PDF defined as:

1'to,)

where

(_tl, ol, Pa,02) = (10, 2, 40, 2)

The reliability analysis results are summarized in the Table 5.1. Figure 5.1 shows the exact limit

state and the full second-order approximation in the u-space. The FCM (X-space) method produces

near exact solution because the &-function is linear. The results suggest that the g-function in the u-space

cannot be adequately approximated by a quadratic function because of the nonlinear normal

transformation.

22



Table5.1

Reliability Results

Method

Probability

of Failure

FORM

1.567e-2

Previous

Method _

Numerical

Problem

SORM 2

1.517e-2

FCM

u-space

1.507e-2

FCM

X-space

2.347e-2 2.307e-2

x Advanced first-order FPI method

z Based on formula developed by Breiumg (see Appendix E)

3 Based on importance sampling method

z_

10.0-

5.0 -

0°0 =

-5.0 -

g<0
I

I

0

,' Approximate g

o S

ct g

-10.0 - , l
-10.0 -5.0 0.0 5.0 10.

UR

Figure 5.1 Illustration of Exact and Approximate Limit States

23



5.2 Nessus/Probabilistic Boundary Element Method

A probabilistic boundm7 element method program, PBEM, has been developed as an alternative

to finite elements. PBEM is based on a simple perturbation interface for the BEST3D, version 3,

boundary element program. This inted_:e allows the user to define structural random variables, compute

sensitivities, and perform advanced mean value updates, i.e., "Moves." The automated coupling

FPI has not been developed, but the concepts are shown here. A simple example problem using PBEM

has been successfully completed. The input format for PBEM is covered in detail in Appendix F.

The tasks completed include a complete BEM perturbation mm/ysis capability using version 3.0

of BEST3D. The development of an automatic perturbation database capability will be completed in

FY'91. In essence, the tasks completed are as follows:

a) The new version of BEST3D has been incorporated with an interlace for performing the

perturbation analysis for all types of the deterministic problems BF.ST3D can haudle. This part

of the program is called PBEM.

b) The automated moving of the design points for advanced mean value method can be performed

using the module MOV. This is not completely automated in the sense the FPI data deck of the

perturbed solutions has to be separately defined. However, this ability to move the design points

automatically using MOV helps in saving considerable time md manual interaction.

c) The existing progrmn modules are sufficient to perform all types of probability analysis for which

a detecministic analysis can be performed using BEST3D. An example involving a cantilever

beam has been successfully completed.

The present version of PBEM is compatible with the current version of PFEM. However, a module

for automatic FPI database development and tying it with PBEM and MOV is required. It is expected

that these tasks will be completed in the next fiscal year.

As described below, a cantilever beam under tip load has been solved successfully, using the new

version of PBEM. Note that the present version of PBEM can also be used to perform probabili_tic

analysis of nonlinear, dynamic, and heat transfer problems.

VALIDATION PROBLEM

Cantilever Beam Under a Tio Load

The problem under consideration is static, and the PBEM is used to get the perturbed solution.

The model uses 28, 8-noded isoparametric quadrilateral boundary elements. The dimension of the beam

and the loading conditions are as shown in the Figttre 5.2, and the details of the random variables are

given in Table 5.2. The tip displacement of the cantilever beam is the response variable. The cumulative

distribution function of the tip displacement is shown in Figure 5.3 and compares well with the exact

solution from Monte Carlo. The CDF shown in Figure 5.3 is only for the static analysis; however, all

other problems involving dynamic, thermal, and inelasticity could similarly be determined.
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Variables

DistributedLoad

Young's Modulus

Length of the Beam

Depth of the Beam

Tip displacement =

px 3 Pl2x el 3
f)= +

6El 2F2 3El

or

where

W --

E=

V ----

t-

d=

l=

Table 5.2

Total Number of Random Variables = 4

Distribution

Normal

Lognormal

Mean

100.0 psi

3.0E + 7 psi

16.0 in.

2Px3 6Pl 2 4Pl s
-Etd---_ _ Etd 3

Lognormal

Loffnom'ml 4.0 in.

Standard

Deviation

10.0psi

3.0E + 6 psi

0.8 in.

0.4 in.

Uniformly distributed load

Young's modulus

Poisson's ratio

Thickness of the beam

Depth of the beam

Length of the beam

For the present data, the tip displacement for the beam shown in Figure 5.1 is = 0.003143 inches, which

is 0.98 x (displacement from BEM). As a result, the beam solutions are calibrated using a factor of
0.98.
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Tablo $.3

Tip Displacement (Z direction, in inches)

Due to Det__c Solution and Pemn'bati_ Solution

_tic solution 0.34829e-02

Perturbed solution:

"0" is number of standard

deviations

Load perv.u'bation.(1) 0.35178e-02

Materiat(E) peratrbatioa(1) 0.24484e-02

Depth perturbation.(0.1) 0.34763e-02

Length perturbation.(0.1) 0.34879e-02
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5.3 Expert System

The Expert system was updated to include help screens for pmbabilistic options such as perturbation

size, convergence criteria, analysis type, analysis method, g function, and confidence intervals. The

help screen for perturbation sizing and convergence criteria is shown below. The help screens for other

options are contained in Appendix G.

Vanderbilt University has been working on defining a new inte_ace to NESSUS called

NESSUS/SHELL. SHELL is a graphics-orionted, menu-driven system that will assist the userin defining

a probabilistic input given deterministic input. A preLiminary write-up for SHELL is given in Appendix

H.

HELP SCREEN FOR PERTURBATION SIZING

*PERT

This keyword is used to determine the amount by which random variable(s) will

be perturbed. The purpose of this procedure is to determine the response

sensitivities. NESSUS uses a iterative perturbation algorithm to compute the

response sensitivities; therefore, this option is closely tied with the convergence

criteria on the *ITER card.

Several considerations should be kept in mind when using this option:

i) a "small" perturbation will give a better estimate of the local

sensitivities.

ii) the perturbation should not be so small that numerical noise washes out

the effect of the perturbation.

iii) smaller perturbations will converge quicker.

iv) too large a perturbation may result in nonconvergence of the algorithm.

Perturbation Sizing

As a starting point, we recommend a perturbation size of 0.i * the random variable

standard deviation with a relative error convergence criteria on the *ITER card

of 0.005. This choice depends on the random variable standard deviation, and

for problems with high coefficient of variation, the user may want to choose a

perturbation of approximately .1 percent of the random variable mean.

The appropriate perturbation size is of course problem dependent but some

generalizations can be made. Note, however, experience is the best guide!!!

Perturbations containing loads make no difference as loads affect only the

right-hand side and convergence will be achieved in I iteration.

The structure is oftentimes fairly sensitive to geometric parameters such as

length, thickness, etc. Thus, perturbations with respect to geometric random

variables may need to be relatively small.
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In general, if the user is aware that the structural response is sensitive to

the random variable to be perturbed then the perturbation used may need to be

relatively small.

The user should always check the sensitivities which are computed to see if they

make sense, i.e., is the sign correct? Is the magnitude in comparison with other

random variables sensitivities what one would expect?

Theoretically, the size of the perturbation should not affect the CDF results.

The perturbations should be small enough to pick up accurately the local

sensitivities, but not too small such that the sensitivities get lost in numerical

noise.

Guideline of Random variable sensitivities

RHS affects only.

Force

Pressure

Distributed load

Perturbation sizes and convergence criteria have no effect.

Initial conditions.

Acceleration

Displacement

Velocity

May be very sensitive to random variable perturbations.

Geometric effects.

Coordinates

Beamsections

May be very sensitive to random variable perturbations.

Material properties. Most likely average sensitivity.

variables are often the more significant random variables.

Properties

Orientation

Dancing - may have high sensitivity

Yield Function

Temperature - effects temperature dependent materials

Often, these random

Stiffness affects.

Springs

Most likely average sensitivity.

Random vibration/Harmonic Excitation. Some affect RHS only, others will affect

the stiffness matrix.

PSD - Changes in PSD magnitude and shape will affect the RHS only; therefore,

the perturbation sizes and convergence criteria will have no effect.

Harmonic - changes in amplitude should affect RHS only. Changes in frequency
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will have a nonlinear effect with most likely average sensitivity.

*ITER

This option is used for defining convergence criteria with respect to the

mixed-iterative formulation, material or geometric nonlinearities and the

perturbation algorithm.

With regards to the perturbation algorithm, the maximum allowable relative error

in the residual is most often used. The other criteria are often left blank.

As a starting point, the maximum allowable relative error is recommended to be

0.001 to 0.005 . Good results have been achieved with 4 to 5 iterations in the

perturbation algorithm. If convergence is not achieved within 4 to 5 iterations

the user should probably reduce the perturbation size. A good upper bound for

the maximum number of iterations is 10.

The user should always check the sensitivity results carefully!
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DRAFT

1.0 Introduction

This document contains instructions on using version 5.0 of NF_._US and supercedes previous

NESSUS manuals.

A significant number of new features have been added in version 5.0 of _US. Each of

the items listed below is discussed fm-ther in the following sections.

• Automated solution procedures

i) The Advanced Mean Value iteration (AMV+) algorithm (PLEVELS) is implemented

in its entirety and automated within NESSUS.

ii) An AMV based reliability algorithm (ZI..EVELS) is implemented in its entirety and

automated within NESSUS.

Improved input format

Combined stress and resistance models

Post-processing of FEM results such as load combination rules, principal stresses, coordinate

_ansformafions, maximums and minimums available with NESSUS.

Coefficient random variables implemented into NESSUSNEM.

Risk module which computes risk with respect to cost, performance and a user-clef'reed criteria.

User-defined hooks to allow the user to define a new material resistance model, post-process

FT.M results, etc.

Automated solution procedures

Two different AMV+ algorithms have been developed and implemented in NESSUS. One

algorithm is used when the probability is prescribed and the corresponding response value z is to

be computed. This algorithm is termed the AMY+ p-level procedure. NESSUS 5.0 performs

automated iterations until a user-specified tolerance is reached.

The other algorithm, which is new to version 5.0, is used when the z value is prescribed and

the corresponding probability is to be computed, and is termed the AM'V+ :-level procedure. Again,

iteration is automatic until a user-specified tolerance is reached. A summary of both algorithms is

given below.

A_MV÷ p-teve]_ Procedure

PRECEDING PAGE BLANK NOT FILMED
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The AM'V+ p-level procedure is used to compute the response corresponding to a specified

probability, or p-leveL In NESSUS, the method is used when points along the entire range of the

CDF are to be computed or the response at specified probability levels is to be computed. This

procedure is selected by setting *ANALTYPE -- 0 or 2 in the FPI input section of PFEM.

Table 1 gives a schematic of the method, along with the number of finite element solutions

that are required to perform a first order probabilistic analysis. In Table I,N is the number of input

random variables and M is the number of p-levels. MVFO refers to "mean value first order," and

AMVFO refers to "advanced" MVFO. In an MVFO analysis, (N+I) sensitivities are computed and

used to construct a linear performance function (g-function) about the mean values of the random

variables. In step 2, an update (or "move") is performed which entails a f'mite element solution to

update the response value at each of the M probabRity levels.

Table I. Schematic of AMV+ p-levels Procedure

Number of Finite

Iteration Step Analysis Element Solutions

0 I MVFO N+ I
|

0 2 AMVFO (Move) + M

1 1 First Order + (N + 1) x M
i

1 2 Move + M

2 l First Order + (N + 1) x M
i

2' 2 Move + M

A fully automated AMV+ p-level algorithm has been implemented in NF_.SSUS. The user

inputs an aUowable number of iteration and a convergence tolerance. At each p-level, _US

continues iteration until either i) the allowable number of iterations is reached, or ii) the relative

change in z is within the convergence tolerance.
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AM'V+ z-level Procedure

The AMV+ z-level procedure is used to compute the probability corresponding to a specified

response or z-level. In NESSUS, the method is primarily used for reliability calculations, where p

must be calculated for a specific value of z.

The key to efficient reliability analysis is the ability to compute quickly the location of the

most probable point (MPP). To reduce the number of f'mite element solutions required while

searching for the MPP, an algorithm has been devised and implemented to estimate a good starting

MPP. Once the estimate is obtained, a straightforward iteration procedure is used to converge on

the desired MPP. It should be noted that the sole purpose of the algorithm used to obtain the starting

MPP is to minimize the number of finite element solutions, and can be modified or adapted as

experience warrants.

The AMV+ z-levelprocedure works in"u-space,"which isrelatedtop by 2p = I+ erf(u/_-),

and "err"isthe errorfunction.An outlineofthe AM'V+ z-levelprocedure isgiven below:

A. Compute an initial estimate for the most probable point.

I. Estimate the probability level u using u = az 2 + bx + c, where a, b, and c are determined

from:

i) u at the mean value of z,

ii) _u/Oz at the mean value of z, and

iii) the AMV result (move) at u = +5 or -5, depending on whether the

z-level is greater than or less than its median, respectively.

2. From the probability level u computed in Step A-I, compute the MPP using FPI and the

response using a move (AMV procedure).

3. Compute a new estimate of the probability level u using u = az= + bx + c, where a, b, and c

are determined from:

0 u at the mean value of z,

ii) u at the MPP obtained in Step A-2, and

iiO the AMV result (move) at u = +5 or -5, depending on whether the

z-level is greater than or less than its median, respectively.

4. From the probability level u computed in Step A-3, compute the starting MPP using FPI.
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B. Given a starting u and MPP:

i) obtain sensitivities at the MPP, and

i0 estimate an improved u and MPP for the input z-level using FPI.

C. Repeat step B until either:.

0 the allowable number of iterations is reached or

iO the relative change in u is less than the convergence tolerance.

Improved Input Format

The input format for PFEM of NESSUS 5.0 is similar to that of version 4.2, but is expanded

and more user-friendly. In particular, the input is now column and case independent. A number

of new key words have been added reflecting new code capabilities.

Combined Stress and Resistance Models

A significant new feature of NESSUS 5.0 is the ability to compute the probabilistic response

of general functions that are a combination offinke element quantities and material resistance. This

is done by computing sensitivities with respect to load, material properties, etc., of the combined

response.

A very flexible framework is provided for user-defined response functions. Some examples

which can be easily programmed include: Campbell diagram, high/low cycle fatigue models, and
fracture models.

Post-processing of FEM Results

In many cases, the user wishes to manipulate the FEM results prior to probabilistic analysis.

Examples may be to implement load combination rules, principal stresses, coordinate

transformations, maximums and minimums. This can now be done easily in NESSUS 5.0. A library

of pre-programmed functions is included in NESSUS 5.0. In addition, the user can program his

own transformations through user-defined subroutines.

Coefficient Random Variables Developed within NF_SUS/FEM

A new type of random variable labeled "COEW for coefficient has been added to

NESSUS/FEM. This random variable will be perturbed the same as other random variables in

FEM; however, it has no direct effect on the structure, but does get passed into the user-defined

material routines. Thus, constants such as the material power coefficient can be considered random
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and passed into the material routines. The COEF random variables will provide a mechanism

whereby the material can be degraded as a result of the structural response. COEF should be useful

for creep, random stress-strain curves, fatigue, and any material models.

NESSUS/RISK

A risk module has been added to NESSUS, called NESSUS/RISK, which will compute the

risk with respect to cost, performance, and a user-clef'reed criteria. A summary of the algorithms is

given below. More information, including example problems and input keywords, is given in section

5.

COST

Risk with respect to cost is computed using the formula

Risk/Cost = Co(x) + P_(x) * C(x) + (l-Pf)*NC(x)

where x is the allowable response in a reliability analysis such as stress, displacement, cycles to

failure; Co is the initial cost as a function of x; Pr is the probability of failure as a function of x; and

NC(x) is the probability of nonfallure as a function ofx. The Pr(x) curve may be the CDF computed

by NESSUS; however, in general, x can be any design parameter including non-random variables.

PERFORMANCE

A second analysis method in RISK is based on performance. In this approach, the risk with

respect to performance is adjusted by changing the primitive random variables to meet a

user-specified probability of failure at user specified design values x. This is in essence part of the

design process.

The inputrequiremems are: the probabilityoffailurefunction,Pf,the random variablestatistics

and probabilisticsensitivitiesand the design requirements. NESSUS/RISK willcompute the

necessary changes in the random variable means and standard deviations needed to meet the

requirements. Each random variable will be adjusted independent of the others, and the mean and

standard deviation are adjusted independently.

USER

An option for a user-def'med criteria for risk is provided through a user-written subroutine,

USRRSK. The probability of fai.lure function and the random variable statistics can be used with

this option.

39



DRAFT

RISK can be run stand-alone or in conjunction with PFEM. Analysis with PFEM is fully

automated from a single input file.

New F'des

The user will notice three new t'des in NESS US 5.0. jobnmae. PDB2 contains the f'mite element

sensitivities at most probable points, whereas jobna=_. Pvs contains sensitivities around the me_.

jobr, t_. _va2 is a scratch file used for the automated AM'V+ algorithm. The user should have no

need for this file.

The second file is the probabilistic storage file jobnatt_.Psr. This f'de will store the

probabilistic results; however, it is not operational for N'ESSUS 5.0.

The thL-d f'de is the risk input file jobname, rsk, and is created by NESSUS when performing

a risk computation within a PlUM analysis.

%
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2.0 Summary of Changes from Version 4.2

This section describes overall changes to the NESSUS code from the previous 4.2 release.

The new features and enhancements present in version 5.0 have been implemented in the

NESSUS/PFEM module and the newly created RISK module.

Stand-alone operation of both the NESSUS/FEM and NESSUS/FPI modules is identical to

that in previous versions with the following exceptions:

I. The NESSUSNPI input is now column independent.

2. A new random variable type (COE_ has been added to NESSUS/FEM.

NESSUS/FEM Users Manual update pages are included in Appendix A for the new COEF random

variables.The purpose of these new random variableswillbe discussedlater in this document.

Specific new capabilities incorporated in NESSUS 5.0 include:

. a fully automated iteration algorithm using the AMV+ procedure to obtain either

(i) the response at a given probability or (ii) the probability at a given response,

both to within a user-specified tolerance;

2. a very general capability for analyzing complex performance functions by

combining both load and material/resistance variables; and

. a capability whereby the material properties may be degraded as a function of

stochastic load and material/resistance variables during the course of the f'mite

dement calculations, and

4. a risk module that will compute the risk with respect to cost and performance.

Risk can be run stand-alone or with a PFEM analysis.

The structure of the new NESSUS/PFEM input deck is shown below. The input is divided

into four major sections:

1. probabilistic analysis input,

2. finite element analysis input,

3. fast probability integration input, and

4. risk analysis input.

Sections I-3 are required input for a PFEM analysis. Section ¢t is optional and is only required

when rutming a risk analysis with PFEM.
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*PFEM

Probab'flistic Analysis Input

*END

*FEM

FE Analysis Input

*END

'*FPI

_'PI Analysis Input

*END

*RISK

Risk Analysis Input (optional)

*END

NESSUS/PFEM Input Structure

Note that each major input section ends with a *zm_ keyword card.

When coupled via a PFEM analysis, the input decks for NESSUS/FEM and NESSUS/FPI

codes are only slightly changed from their stand-alone versions; random variable clef'tuitions

(*_mr_sr. and *r r.xT cards in FEM and *D r.rp,am_ in F'PI) are now input in the probabilistic analysis

input section, *PFEM. Also, NESSUS/FPI input is now read in column-independent format. These

changes will reduce errors and the possible ambiguity that can result when multiple definitions of

the same random variable are given in the same input deck. The random variable input cards also

now accept an 8-character arbitrary name for each random variable.

To describe the approach used in NESSUS 5.0 to allow general reliability analysis, it is useful

to review the methodology used in the earlier versions of NESSUS. Previously, a structural response

function Z =Z(X) was defined either by a numerical method such as NESSUS/FEM or by a closed

form expression, In a probabilistic structural response analysis, the basic capability of version 4.2,

the performmce function was formulated as g(X) = (Z(X) _ Zo), where 7-ocan be thought of as a

limiting value of Z. From this, it can be seen that the performance function is g(X) = Z(X) - 7_.o= O.

Point probability estimates were made using specific limits for Zo, and the cumulative probability

distribution function (CDF) was obtained by simply varying 7_ and repeating the analysis.
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To define reliability (as opposed to structural response) requires a more general definition of

the performance function. The approach used to accomplish this in NESSUS is straightforward.

Instead of interpreting Z = Z(X) as being solely the structural response, its definition is extended

to include the effects of both the response and material/resistance model. Specifically, Z(X) is

formulated to represent the overall response function. For a structural reliability analysis, Z(X)

will be a function to predict a particular failure mode. (Note that the probabilistic structural response

analysis version 4.2, is a subset of the capabilities in NESSUS 5.0.)

A very general framework has been implemented in NESSUS 5.0 for defining performance

functions. Work is currently underway to code in a library of response functions, and user

programmable subroutines have been provided to allow "home grown" performance functions to
be defined.

In summary, the performance function in version 4.2 could be either a structural response

(finite element) or a closed-form response (PAAM). In version 5.0, the response can be a

combination of structural response and closed form. Thus, material resistance models can be coupled

with the structural response for reliability calculations.

A risk module, as mentioned in the introduction, has been implemented into NESSUS 5.0.

The risk module can be run within a PFEM analysis. The input for the RISK module, see section

5, is the same as when RISK is run stand-alone, except the probability of failure function is supplied

by PFEM. The probabiLity of failure function is essentially the CDF computed by PFEM.
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3.0 NESSUS/PFEM Input

The probabilistic analysis section (,,rrs_) is divided into four major input sections:

1. z-function definition (*zrvzrz_) input,
2. random variable definition (*t_wzrzn) input,

3. mean value analysis definition (*t_D-.rzNz) input, and

4. advanced mean value analysis definition (*_u,/vvzrzsz) input.

The order of input of each section is arbitrary. To summarize, the *zrDsrxN- input block

contains the input necessary for defining the response function and for including resistance variables

in the probabilistic analysis. The *_vD-.rzsz input block contains the random variable definitions.

The *tcrvsrzss and *_'vsrzm_ input blocks define the mean value and advanced mean value

analyses, respectively.
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3.1 Input Features

Input is keyword driven for readability and can appear anywhere on the input line, allowing

for indentation. All alphanumeric input is matched on the first four characters. Comment

lines are designated by inputting a "C" in column 1.

Each input line is f't_t read as a character string, from which the input information is then

parsed. The result is that the user is given warning and error messages ff an input line is in

error, rather than crash the program. The exception is when a series of real or integer data

is to be input, in which case a standard Lree format read is used; this allows the user to input

data across multiple lines ff desired.

Random variables are input in the PFEM input block as opposed to being defined in both

the NESSUS/FEM and NESSUS/FPI input blocks. Also, a distribution and a descriptive

name is input for each random variable.
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3.2 Z-Function Definition (*ZFDEFINE)

In NESSUS 5.0, random variables are not defined in terms of whether they are "stress" or

"resistance" variables. Instead, they are defined as either "computational" or "explicit" random

variables. Computational random variables are those which affect the response calculation directly,

i.e., the f'mite element analysis. Explicit random variables are those which are non-computational,

i.e., not FEM random variables. (Random variables may also be both computational and explicit.)

In version 5.0, NESSUS/FEM will be the computational method used. Future versions will have

an option for the boundary element method to be the computational tool

From the computational and explicit random variables, a very general response function, Z,

can be defined. This Z-Function is defined in this section.

Summary of *zrvtrzmt keywords
*ZFDr.rxN_. Signals beginning of z-function def'mition.

*ZFUNCTION Selects the response function.
*UZrtmCTZON Signals that the user-defined z-function is to be used.

*COMPUTATIONALMETHOD Selects the computational method and random variables.
*_.XPLICrTVm_TAm.=.S Selects the explicit random variables.

*CVm_.Z_=mL_.Defines a computational response variable and operations.
*,.ND Signals end of z-function definition.

*ZFDEFZNE

* ZrDZrXNz signals the start of the z-function definition. Following keywords will be interpreted

as z-function keywords until the *e_ro keyword is reached.

*ZFUNCTION izfunc nzcoe£

zcoe£ (i) , iml, nzcoe_

* ZFUNCTION is used to select the response function. If this card is omitted, the structural response

value selected in the *MVD_.rZNv. input section wii1 be used. (This keyword is considered optional.)

47



DRAFF

Response function models are selected (1) from a library of pre-programmed functions available

in NESSUS, or (2) from auser-programmed subroutine. If the UZFUNCTIONkeyword card is omitted,

then izfunc will refer to one of the pre-defined response functions available in NESSUS. If the

uzrm_c'Txot_ keyword card is present, then the user subroutine vzrvsc is called, and the user is

required to provide coding to define the response function. The iz_un¢ parameter is passed into

the uzrosc subroutine, so that the user can develop a personal library of response fimctions.

tzeenc is the response function number.

.zcoee is the number of coefficients to be made available to the response function def'mition.

zcoe_ is the list of real coefficients to be made available to the response function. (Required

if nzcoef is greater than zero.)

*UZFUNCTZON

uzr_crzoN signals that the user-subroutine vzr_c C_ser ZFUNCtion) is to be used to define the

response model. The default is to not call vzrvsc.

NESSUS contains a library of pre-defined response models for often used functions, such as Paris

crack growth, Low Cycle Fatigue, etc. If the uzrusCTZOS keyword card is omitted, then iz_unc

will refer to one of the pre-defined response models available in NESSUS. If the UZFUNCTION

keyword card is present, then the user subroutine UZFUSC is called, and the user required to provide

coding to define the response model. The izfunc parameter is passed into the uzrusc subroutine

so that the user can develop a personal library of defined response models.

*CCNPUTATZONALMETROD icmmod nsvaEs

_=n,a= (X), £-1, nsTazs

The *COMPUTAT IONALMETHOD keyword is used to select the computational method and the associated

random variables. (Optional-use only if a f'mite element model is included.)

icmod is the computational method. (Required if nsvars is greater than zero)

ic_od = I - NESSUS/FEM
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nsvars _ the number of computational random variables. (Required ffkeyword is present.)

jsvar _ an integer list of computational model random variable numbers. (Required ffnsvars

is greater than zero.)

*EXPLICITVARIABLES nzTaxs

JEvaE (i) ,i_l, n_-wa=s

*EXPLICITVARIABLES is used to identify the explicitly defmed random variables (Optional).

nrvars is the number of explicitly defined random variables. (Required ifkeyword is present.)

jrva,: is an integer list of explicitly defined random variable numbers. (Required if nrvars

is greater than zero.)

*CVARXABLE icvaz

*CVARIABLE (_Computational_'_i,lL[A]L_) is used tO define a new response variable that is a function

of the computational response variables obtained from the computational (e.g., FEM) analysis. The

definition for each response variable is given on a series of "unstarred" keywords within the

*CVA_.I_L_. input block and must end with an _.t,m statement.

Some instances when a *CV_ZAB_.Z would be used effectively in specifying a new response variable

include def'ming a (1) displacement measure in a different coordinate system, (2) maximum prh_cipal

stress occurring within a group of nodes in the finite dement mesh, or (3) root-mean-square response

computed from a selected set of spectral case results.

Defaults are defined for each CVARIABLE parameter and are indicated in the descriptions below.

icvar is the computational random variable number
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Summary of *_z_ keywords

Signals beginning of the *cvaaz_ definition.
*cvxzxxe_s Selects a response type.

z_PT:'_s Selects a layer.

L_zzz Spec/fies a list of conditions.
com)zTzom_z_ Specifies a list of nodes.

NOD,.LZS_ Specifies a list of componcms.
COMFONZNTLZST Scion'is aNESSUS Pre-defmcd operation.

OPZRaTZOS Selects a user-dermal operation.
UOPERATION Defines a coordinate transformation.

Tm_srom_Tzo. Signals the end of the *CVaUtZXSLZdef'mition.

A description of each *CWatZXSLr. key'word is given below:

Rr._'z_ I _eep

m_sPmz isused to select the response type. Valid response types are listed below. If

RF__PTYPEis omitted,jresp willbe settothetotheresponsetypeselectedintheMVDEFINE

section.

jz®sp is the response key. Valid keys are listed below. A detailed explanation is

provided ill Section 4.
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Y_nse Keys

I - TOTAL DISPLACEMENT
2 = TOTAL STRA_

3 - TOTAL STRESS
II - PLA3TIC STRA_

12 - BACKSTRESS

13 - CREEP STRA_

14 - THERMAL STRAIN

17 - GENERALIZED STRA/N

18 = GEI_RALIZED STRESS

21 = MATERIAL STATE VARIABLES

25 = VELOCITIES

26 = ACCELERATIONS

30 = THE EIGENVALUE FOR THE MODE

31 = MODAL DISPLACEMENT tEIGENVECTOR)
32 = MODAL STRAIN

33 - MODAL STRESS

35 = THE FREQUENCY IN RADtAN PER TIME

36 = THE PItEQI.rI_CY IN CYCLES PER TIME
51 = REAL DISPLACEMENT

52 = REAL s'rRA_

53 = REAL _

61 = IMAGINARY DISPLACEMENT

62 = IMAGINARY STRAIN

63 = IMAGINARY STRESS

71 - THE AMPLITUDE OFTHE DISPLACEMENT

72 - THE AMPLITUDE OF THE STRA/N

73 = THE AMPLITUDE OF THE STRESS

81 - THE PHASE OF THE DISPLACEMENT

82 =THE PHASE OFTHE STRAIN

83 = THE PHASE OF THE STRESS

9t = MEAN SQUARE DISPLACEMENT

92 = MEAN SQUARE STRAIN

93 - MEAN SQUARE STRESS
96 = SI'RN.3S VELOCrl'Y

7_YZR is used to specify the layer number at which results wiI1 be extracted.

In NESSUS 5.0, this keyword is inactive.

layer is the layer number. (Default, layer = 1)

CONDITIONLZST ncond

_)cond (i) , £m1, ncond

corn) ITIONLZST defines a list of conditions (increments, modes, or spectral cases) from which

to extract results from. If this keyword is included, the OPERATZON keyword is required to

select an operation to be applied to the extracted data. {An operation is needed to.compute
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and remm a single implicit response variable fl'om the list of results.) Additionally, the loop

over the number of conditions defined on the *CONDITION keyword card in the *MVDZrZNZ

section will be disabled. This is m optional keyworcL

An example use of the CONDITIONLIST keyword might be to define a CVARIABLE

response variable to be the root-sum-square of a list of modal frequencies.

ncond is the mmlb_ of conditions.

jcond is the list of condition numbers.

NODELZST nnod

Jnods (£),£,..I,nnod

.OVSLZST defines a list of nodes from which to extract results. If this keyword is included,

the OPSaATZON key_,ord is required to select an operation to be applied to the extracted data.

(An operation is needed to compute and return a single implicit response variable from the

list of results.) Additionally, the loop over the number of nodes defined on the *Not_z keyword

card in the *MVDSrzm_ section will be disabled. This is an optional keyword.

nnod is the number of nodes.

jnode iS the 1_ of node numbers.

CCI4PONENTLIST nccmp

Jccsap(4),£=I, ncomp

CCX_OS-.ST'-TSTdefines a list of components from which to extract results. If dfis keyword

is included, the Ot,-.tmTZO. keyword is required to select an operation to be applied to the

extracted data. (An operation is needed to compute and return a single implicit response

variable from the list of results.) AdditionaLly, the loop over the number of components

defined on the *COMPO_ZSTkeyword card in the *MVD_rZN_ section will be disabled. This is

an optional keyword.

neorap is the number of components.
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jcomp is the list of component numbers.

OPERATION iopt nocoef

ocoe£ (£), i-l, nocoef

OPZ_TXON is used to select an operation to be applied to the extracted data. If iopt is 0 or

if this card is omitted, the requested response value, specified on the _sP_-. keyword, is

simply returned. If the CO_'DZ_IONLIST, NOD_.T.IST and/or COHPON-._crLIST keywords are

used, the user is required to select an operation. (An operation is needed to compute and

return a single implicit response variable from the list of results.) The default is no operation.

NESSUS contains a library of pre-det'med operations for often used functions, listed below.

If the UOPERATION keyword card is omitted, then iopt: w/li refer to one of the pre-<lefined

operations available in NESSUS. If the UOPSRATZOS keyword card is used, then the user

subroutine uoPe_, is called, and the user is required to provide coding to def'me the operation.

The iopc parameter is available in the UOL'_.RAsubroutine so that the user can develop a

personal library of defined operations.

iopc is the operation number. If the UOPERATION keyword is not used, iopc is

used to select a pre-defined operation (see table below)." If the UOPERATION

keyword is used, the iopt: nser-def'med operation coded in the UOPERA subroutine

is selected.

nocoef is the number of coefficients to be made available to the operation.

ocoe_ is the list of real coefficients to be made available to the operation. (Required

if nocoe_ _ greater than zero.)
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N'ESSUS Pre-deFmed

iopt

1

2

3

4

5

Operation

Algebraic Maximum Value

Algebraic Minimum Value

Absolute Maximum Value

Absolute Minimum Value

Square Root of the Sum of the Squares

DOPI_IRATZON

UOPERATIONsignals that the user-subroutine uoP-._ (L_ser OPERAtion) is to be used to define

the operation. The default is to not call uoP_..

NESSUS contains a library of pre-defmed operations for often used functions such as

maximum value, minimum value, etc (see *OPEI_,TZON). If the UOPEILKTIONkeyword card

is omitted, then iopt will refer to one of the pre-defined operations available in NESSUS.

If the UOPZgATZONkeyword card is used, then the user subroutine voPs_ is called, and the

user is required to provide coding to defme the operation. The iopt parameter is available

in the uoP p.lv, subroutine so that the user can develop a personal library of defined operations.

_SFOgI_TZON _t_an

:)xz._s (1) _(1)
:)am:Lm(2) amg (2)
:)mz:LJ(3) mug (3)

TRANSFORMATION specifies a coordinate transformation that is to be applied to the data. The

transformation is applied to the data before being operated on (see OPERATION keyword).

In general, transformations are element type dependent" therefore, a complete description of

valid transformations is included ha Section d.0. Th/s is an optiona/keyword.
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jtran is the transformation option. Valid options include:

jeran = 0 - no transformation is applied and the following three lines are not
read.

jtran = I - a rotational transformation is performed and the following three

•lines are read.

jtran = 2 - principal values are computed and the following three lines are

not read.

{ j axis (i) ang (i), i- x, 3 } define the ax_ and angle of rotation for the

transformation. Rotations are applied in the same order as the { jaxis ang} pairs

are input. Angles must be specified in degrees. Valid transformation are given in
Section 4.

The default is no transformation.

END

raNDsignals the end of input for the current *CVARIABLE.

*END

*z_ signals the end of input for the *ZFDEFINE ,_ction.
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3.3 Random Variable Definition (*RVDEFINE)

*iWD_i'Ilfg

*Rv_sriss signals the start of the random variable definition. The following keywords will be

interpreted as random variable definition keywords until the *ma) keyword is reached.

*DIUrZHlr, £_v,n,,_

m_ mdeV _t "

6mtr_ution data

type
datablock

The *DZrZN_. keyword is similar to the *D_.rz_r_ keyword used in NESSUS/FEM with the added

enhancement of def'ming a distribution type and a descriptive name. (Note, however, that for a

PFEM analysis, *DEFINE keywords are not input in the NESSUS/FEM input deck.)

irvnum is the random variable number.

rvname is a user-defined, 8-character name for the random variable.

dist isan alphanumeric distn_uution name (only the first four characters are significant).
Valid names are:

r_IBULL

NORMAL

EXTREHEVALUE

LOGNORMkL

CHI SQUARE

MAXENTROPY

NESSUS

FRECHET

TWEIBULL

TNORMAL

56



DRAFT

If dist -- HAXENTROPY, TWEIBULL, or TNOSMAL, then the two distribution coefficients, as

defined in the FPI User's Manual, are read off of the next line.

If dist = H30_NTROPY or NESSUS, then k coefficients, as defined in the FPI User's Manual,

are read from the following lines.

If the random variable number irvnum _ _ the jsvars _, i.e., irvnum _ a computational

random variable, then the type and daeablock are expected; otherwise they are not input.

Documentation for eype and dat:abloc_ are given in the NESSUS/FEM User's Manual.

Examples for type are: FORCE, PROP, COOR, etc. The data block is the associated data

corresponding to the type, e.g., the forces, material properties, and coordinates.

*_SaTm_ Jpe_

Jpva:l shift 1

JpTa:2 shi£e2

_pTu. shlftn

*eV.RTURS defines a perturbation along with the random variable numbers and the amount each

random variable is to be perturbed.

Input for this keyword is identical to that in the NESSU$/FEM User's Manual.

jper_: is the perturbation number.

jpvar (i) i._ the random variable number.

_,hift (i) is the number of standard deviations by which the jpvar (i) random variable is

changed.
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3.4 Mean Value Analysis Definition (*MVDEFINE)

*MVDEFINE

*t_,vzrzss signals the start of the mean value analysis def'mition. The following keywords will be

interpreted as mean value analysis keywords until the *strv keyword is reached.

In this section, the keywords to defme the range of the PFEM analyses for the mean value first or

second order, (MVFO or MVSO) and the type of data to be analyzed, e.g., stress, or frequency, are

defined. The -MVDErINE keywords provide the same functionality as the *MVFO keywords in

version 4.2. Mean value first order or second order analyses can be performed with PFEM for any

number of nodes, modes, components, increments, or harmonic cases in a single analysis.

The user specifies what data to process by defining the beginning and ending parameters for the

keywords: *COND, *NODZ, *C_. The beginning parameter defaults to I and the ending parameter

defaults to the beginning parameter. The parameters define the range of nodes, modes, etc., to

process.

*DATATYPE

*RESPONSETYPE

*CONDITIONNUMBER

*NODENUMBER

*CC_PONENTNUMBER

*LAYERNUMBER

*PERTURBATIONUMBERS

*RANVARIABLENUMBERS

*RESTART

*PAAM

*END

Summary of *w_zrzn keywords

*t_,vzrzsz Signals the beginning of the mean value analysis definition.
Selects the data type.
Selects the response type.
Selects the condition (increment, modal or spectral) numbers.
Selects the node numbers.

Selects the component numbers.
Selects the plate element layer number.
Defines the perturbation numbers.
Defines the random variables numbers.

Signals restarting ofprobabilistic analysis.
Signals approximate method turbine blade model will be used.
Signals the end of mean value analysis definition.

The purpose of these keywords is identical to version 4.2.
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tl4VDRFXI¢ll

*_,'vzrxsz signals the start of the mean value analysis definition. The following keywords will be

interpreted as mean value keywords until the *SND keyword is reached.

*DATXTYPE t.data

This keyword is used to specify the type of data on which to perform the probabilistic analysis.

4'

= 0 Incremental

= 1 Eigenvalue

= 2 Harmonic/spectral

No default. Must be specified for M'V analysis.

*COND _condl icond2

*CONDselects the beginning and ending condition numbers for the mean value analysis. Condition

refers to either incremental, modal, or harmonic/spectral analysis. The condition type is selected

with the *DATAZ_'P_. keyword. NESSUS wiLl perform probabilistic analysis from condition number
icondl to icond2.

ieondl = beginning condition number for MV analyses.

icond2 = ending condition number for MV analyses.
icondl default = I.

icond2 default = icondl.
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*Novs selects the beginning and ending node numbers for the mean value analysis. NESSUS will

perform probabi/isfic analysis from node number icondl to icond2.

inodel = beginning node number of MV analyses.

inode2 = ending node number for MV analyses.

inodel default = 1.

inode2 default = inodel.

*c(:_ £compZ $.ccmp2

*COt_ selects the beginning and ending component numbers for the mean value analysis. NESSUS

will perform probabilistic analysis from component number icompl to icomp2. Allowable

component numbers are 0 through 6.

icompl = beginning component number for MV analyses.

icomp2 = ending component number for MV analyses.

icompl default = 1.

icomp2 default = icompL

*I, XrgR £1ayl £1ay2

*LX_ZR selects the beginning and ending layer numbers for the mean value analysis of the plate

element (#75). NESSUS will perform probabilistic analysis from layer number ilayl to ilay2.

Allowable layer numbers are through 5.

ilayl = beginning layer number for MV analyses.

ilay2 = ending layer number for MV analyses.

ilayl default = I.
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Hay2 default = ilayl.

*PERT npeEt

pezts (i), is,l, nper_

*t'ZRT selects the perturbations to be used in the probabilistic analysis and the order in which the

random variables will be perturbed.

npert = the number of perturbations.

perts = is a list of perturbation numbers.

No default. Must be specified for MV analysis.

*RANVAR [LEIU_VE

=anv=s (i), iml, hearty=

*p,m_vaz_ selects the random variables to be used in the probabilistic analysis and their order. This

is the order the random variables will be presented in the user-written subroutines RESPON and

UZFLrNC.

nranvr = the number of random variables.

ranvrs = is a list of random variable numbers.

No default. Must be specified for MV analysis.

*RESPTYPE i=styp

irstyp specifies the response variable to extract from the perturbation database. The allowable

options are:
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=0I A TOTAL DISPLACEMENT COMPONENT
=02 A TOTAL STRAIN COMPONENT
=03 A TOTAL SWRESS COMPONENT
=I I A PLAffHC STRAIN COMPONENT
=12 A BACK3"I'RP..SSCOMPONENT

=13 A CREEP STRAIN COMPONENT
=14 A THERMAL STRAIN COMPONENT
=17 A GI_][RA£Jz_ED STRAIN COMPONENT
=18 A Omq_O.J2ZD _ COMPONENT

=30 THE EIOENVALUE FOR THE MODE

=31 A MODAL DISPLACEMENT (EIGEHVECTOR)
COMPONENT

=32 A MODAL STRAIN COMPONENT, IF
AVAILABLE

=33 A MODAL STRESS COMPONENT, IF
AVAILABLE

=35 THE FREQUENCY IN _DIAN PER
=36 THE FREQUENCY IN CYCLES PER TIME
=51 A REAL COMPONENT OFTHE

DISPLACEMENT

No default. Must be specified for MV analysis.

=52 A REAL COMPONENT OF THE S'IRAIN
=53 A REAL COMPONENT OF THE STRESS
-61 AN IMAGINARY COMPONENT OFTHE

DISPLAC'EMENT

=62 AN IMAGINARY COMPONENT OFTHE
STRAIN

=63 AN IMAGINARY COMPONENT OF THE
STRESS

=71 THE AMPLITUDE OFTHE DISPLACEMENT
=72 THE AMPLITUDE OFTHE STRAIN
=73 THE AMPLITUDE OF THE STRESS
=81 THEPHASE OFTHE DISPLACEMENT
=82 THE PHASE OF THE STRAIN
=83 THE PHASE OF THE STRESS

=91 A MEAN SQUARE VALUE OF THE
DISPLACEMENT

=92 A MEAN SQUARE VALUE OF THE STP,.AIN

=93 A MEA.N SQUARE VALUE OFTI_ STRESS
=96 A STRESS VELOCITY VALUE

*KESTaJ_ £L-e_r_

This keyword is used to bypass the mean value finite element perturbations. All probabilistic

algorithms will be initiated from this point. The user must have available ajobname.pdb perturbation
database.

irest specifies the restart option, irest = 1 signifies NESSUS to bypass mean value f'mite element

database generation.

*i?a,kM
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Signifies NESSU$ that the approximate model for the turbine blade is to be used. See the 5th annual

PSAM report or the paper, "Application of the Probabilistic Approximate Analysis Method to a

Turbopump Blade Analysis," by B. Thacker, R. McClung, and H. Millwater, presented at the 31st

$DM Conference, Long Beach, CA, 1990.

*ZBD

END signals the end of input for the *m_zrzNz section.
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3.5 Advanced Mean Value Analysis Definition (*AMVDEFINE)

*AMVDEFINE

*t_vDzrzsz signals the start of the advanced mean value analysis def'mition. The following

keywords will be interpreted as advanced mean value analysis keywords until the .v.m_ keyword

is reached.

If the *_qv_r.rzNE card is present, an advanced mean value analysis will be performed.

In this section, the keywords to define the range of the PFEM analyses for the advanced mean value

with iterations (AMV+) first or second order (AM'VFO or AMVSO) procedure are specified.

Advanced mean value first order or second order analyses can be performed with PFEM for any

number of nodes, modes, components, increments, or harmonic cases in a single analysis.

A significant enhancement in version 5.0 is the automated iteration capability for the p-level and

z-level procedures. The ,, ZTzRkeyword and the FPI *_,;_z,_"_ z keyword controls these algorithms.

The user specifies what data to process by defining the beginning and ending parameters for the

keywords: *coNy, ,,NODe, *C_,_. The beginning parameter defaults to 1 and the ending parameter

defaults to the beginning parameter. The parameters define the range of nodes, modes, etc., to

process. (Note: AMV+ analyses can be very time consuming. The user should be aware of the

number of probabilistic analyses being specified).

*_'IVDEFINE

*ITER

*CONDITIONNUMBER

*NODENEMBER

*COMPONENTNUMBER

*LAYERNUMBER

*END

Summary of *_zrzn keywords
Signals beginning of advanced mean value keywords.
Defines the convergence criteria for the AMV+ p-level and z-level
algorithms.
Selects the condition (increment, modal or spectral) numbers.
Selects the node numbers.

Selects the component numbers.
Selects the plate element layer numbers.
Signals end of mean value keywords.

The purpose of these keywords is identical to version 4.2. The * zz-r.R keyword is a new keyword.
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*AMVDEFZNE

*a_,,tV'D_.r zNz signal the start of the mean value keywords. The following keywords will be interpreted

as advanced mean value keywords until the *r.ND keyword is reached.

*COND icondl icond2

*CONDselects the beginning and ending condition numbers for the mean value analysis. Condition

refers to either incremental, modal, or harmonic/spectral analysis. The condition type is selected

with the *DA_rXT'_P_.key'word in the MVDEFINE section. NESSUS will perform AM'V+ analyses

from condition number icondl to icond2.

icondl = beginning condition number for M'V analyses.

icond2 = ending condition number for MV analyses.
icondl default = 1.

icond2 default = icondl.

*NODE inodel inode2

*NOD_. selects the beginning and ending node numbers for the advanced mean value analysis.

NESSUS will perform probabilistic analysis from node number icondl to icond2.

inodel = beginning node number for MV analyses.

inode2 = ending node number for MV analyses.
inodel default = 1.

inode2 default = inodel.
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*CCIO icempl iezmp2

*cot_ selects the beginning and ending component numbers for the advanced mean value analysis.

NF.SSUS win perform probabilistic analysis fi'om component number icomp I to icomp2. ALlowable

component numbers are 0 through 6.

icompl = beginning component number for MV analyses.

icomp2 = ending component number for MV analyses.

icompl default = 1.

icomp2 default = icompl.

*IJL_T,R ila¥1 Ltay2

*_t_ selects the beginn_mg and ending layer numbers for the advanced mean value analysis of

the plate element (#75). NESSUS will perform probabilistic analysis from layer number ilay 1 to

ilay2. Allowable layer numbers are I through 5.

ilayl = beginning layer number for MV analyses.

ilay2 = ending layer number for MV analyses.

ilayl default = 1.

ilay2 default = ilayl.

*ZYER

£t:mauc tollz=

* z_.x defines the convergence criteria for the AMV+ z-level and p-level iteration procedures. The

probabilistic algorithm will continue tmtil either the maximum number of iterations is reached,

it:max, or the convergence tolerance, t:olerr, is satisfied. The default is AM'V analysis, iemax =

I and t:oXe:r = I.E-8.
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*IBD

END signals the end of input for the *_reDZrZNZ section.
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4.0 CVARIABLE Transformations and Response Values

The following sections present valid trandonnation options, response type options, and component

def'mifioms for each response quantity available.
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4.1 Valid Transformations

TRANSFORMATION jtran

data block ifjtran =I

wh_e

jtran = transformation option

and

jtran = 0

jtran = I

jtran = 2

=> no transformation will

be performed

=> quantities will be rotated to a user..defmvd

coordinate system as described below

=> quantities will be rotated to the principal

value coordinate system

DATA BLOCK FOR jtran =1 FOR ELEMENT TYPES 7 AND 154

TRANSFORMATION l

jaxis(1) ang(1)

jaxis(2) ang(2)

jaxis(3) ang(3)

where

jaxis = axes of rotation

ang = angles of rotation in degrees

and

jaxis = 1 => x-axis

jaxis = 2 => y-axis

jaxis = 3 => z-axis

The user-def'mecl coordinate system x 3y 3z 3 is defined in terms of the global coordinate system

x°yOz ° as follows. First, x ly tzt is constructed by rotating x°y_ ° by ang(l) about the positive

jaxis(1)-axis ofx Oyoz o in the fight-haqded sense. Second, x 2y :: 2 is constructed by rotating x ly =: t

by ang(2) about the positive jaxis(2)-axis ofx _y I: _in the fight-handed sense. Third and last, x 3y 3, 3
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is constructed by rotating x2v2z 2 by ang(3) about the positive jaxis(3)-axis of x2y2z" in the
right-handed sense. From this'procedure, in three dimensions, any coordinate system x 3y 3z 3 can

be constructed from x OyOzo.

DATA BLOCK FOR jtran =1 FOR ELEMENT TYPES I0 AND 153

TRANSFORMATION I

idummy angle

idummy rdtunmy

idummy rdummy

where

idummy = unused integer value

rdummy = unused real value

angle = angle of rotation in degrees

The user-def'med coordinate system z 'r' is def'med in terms of the global coordinate system z °r°

as depicted in Figure 2. "

r j_r°_9 Je

Figure 2.

DATA BLOCK FOR jtran =1 FOR ELEMENT TYPES 3, 11,151 AND 152

TRANSFORMATION 1

idununy angle

idummy rdummy

idummy rdummy

where
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idummy = unused integer value

rdummy = unused real value

angle = angle of rotation in degrees

The user-def'med coordinate system x ty _ is defined in terms of the global coordinate system x°y o

of the perturbation database, as depicted in Figure 3.

ly °

×e

Figure 3.

DATA BLOCK FOR jtran --1 FOR ELEMENT TYPES 75 AND 98

The option jtran = 1 is not currently implemented for these elements since mesh data (which may

not reside on the perturbation database) are needed to calculate rotations from the global coordinate

system.
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4.2 Response Values for Incremental Analysis

Table 1. Admisu'ble values ofjresp (response type) for incremental problems.

1 -- total displacement

2 = total strain

3 = total stress

11 = plastic strain

12 = backstress

13 = creep strain

14 = thermal strain

17 = generalized strain

18 = generalized stress

21 = material state variables

25 = velocities

26 = accelerations
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Table 2. Admissible values ofjtran (transformation option) for each incremental response type

(jresp) and element type (NA = response type not available).

3 7 10 11 75 98 151 152 153 154 dement [
type I

II

0 0 0 0 0 0 0 0 0 0
I 1 1 1 1 I l 1 1

0 0 0 0 0 0 0 0 0
2 1 1 1 1 NA 1 1 1 l

2 2 2 2 2 2 2 2
q i

0 0 0 0 0 0 0 0 0
3 1 1 1 1 NA 1 1 1 1

2 2 2 2 2 2 2 2

0 0 0 0 0 0 0 0 0
I 1 l 1 1 1 NA 1 l 1 1

2 2 2 2 2 2 2 2

0 0 0 0 0 0 0 0 0
12 I I I I NA I I I I

2 2 2 2 2 2 2 2
,a

0 0 0 0 0 0 0 0 0
13 l I I I NA I I I I

2 2 2 2 2 2 2 2

0 0 0 0 0 0 0 0 0

14 1 1 1 1 NA 1 1 1 1
2 2 2 2 2 2 2 2

0 0
17 NA NA NA NA NA NA NA NA

0 0
18 NA NA NA NA NA NA NA NA

0 0 0 0 0 0 0 0 0
21 NA

jzesp
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25

o
1

o
1

o o o ,
1

26

o
1

o
1
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1

o

1

jresp
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Available components for incremental problems

1)

2)

Component clef'tuitions for scalar response quantities

jresp = 21: (material state variables)

component 1 = equivalent plastic strain

component 2 = equivalent creep strain

component 3 = equivalent swell strain

Ifjtran = 0 (no transformation), then

All usual components are available (including component #9

if it happens to be defined).

3) If jtran = l (rotation), then

Component #9 is available (if it happens to be def'med).

Other components ( 1,2, ..., etc. ) are available in the

new user-def'med coordinate system.

4) I.fjtran = 2 (principal values), then the available components are

0 = effective stress or effective strain

1 = minimum principal stress or principal strain

2 = intermediate principal stress or principal strain

3 = maximum principal stress or principal strain

4 = maximum shear stress or maximum engineering shear strain

except for element types 3 and 151 when jresp = 2, 11, 13, or 14, in which case the available

components are

0 = effective strain

1 = minimum principal strain in the xy-plane
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2 = ret_me_d as zero

3 = maximum principal strain in the xy-plane

4 = maximum engineering shear strain in the xy-plane

76



DRAFT

4.3 Response Values for Eigenvalue Analysis

Table 3. Admissible values ofjresp (response type) for eigen-problems.

30 = the eigenvalue for the mode

31 = modal displacement (eigenvector)

32 = modal strain

33 = modal stress

35 = the frequency in radian per time

36 = the frequency in cycles per time
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Table 4. Admissible values ofjtran (transformation option) for each eigen-problem response type

(jresp) and element type (NA = response type not available).

30

3 7 10 11 75 98 151 152 153 154 dement

type

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
31 l 1 I 1 1 1 1 1

32

33

35

36

jt_sp

0 0 0 0 0 0 0 0 0
1 1 1 1 NA 1 1 1 1
2 2 2 2 2 2 2 2

i

0 0 0 0 0 0 0 0 0
1 1 ! 1 NA I 1 1 I
2 2 2 2 2 2 2 2

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

78



DRAFt

Available components for eigen-problems

1) Component definitions for scalar response quantifies

jresp = 30:

component I = the eigenvalue for the mode

jresp = 35:
component 1 = the frequency in radian per time

jresp = 36:

component 1 = the frequency in cycles per time

2) Ifjtran = 0 (no transformation), then

All usual components are available (including component #0

if it happens to be defined).

3) Ifjtran = 1 (rotation), then

Component #0 is available (if it happens to be defined).

Other components ( l, 2 ..... etc. ) are available in the

new user-defined coordinate system.

4) Ifjtran = 2 (principal values), then the available components are

0 = effective stress or effective strain

I = minimum principal stress or principal strain

2 = intermediate principal stress or princip',d strain

3 = maximum principal stress or principal strain

4 = maximum shear stress or maximum engineering shear strain

except for element types 3 and 151 when jresp = 32, in which case the

available components are
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0 = effective strain

I = minimum principal strain in the xy-plane

2 = returned as zero

3 = maximum principal strain in the xy-plane

4 = maximum engineering shear strain in the xy-plane
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4.4 Response Values for Spectral Analysis

Table 5. Admissible values ofjresp (response type) for spectral problems.

51 = real displacement

52 = real strain

53 = real stress

61 = imaginary displacement

62 = imaginary strain

63 = imaginary stress

71 = the amplitude of the displacement

72 = the amplitude of the strain

73 = the amplitude of the stress

81 = the phase of the displacement

82 = the phase of the strain

83 = the phase of the stress

91 = mean square displacement

92 = mean square strain

93 = mean square stress

96 = stress velocity -
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Table 6 (1 of 2). Admissible values ofjtran (transformation option) for each spectral response

type (jresp) and element type (NA = response type not available).

51

3 7 10 11 75 98 15i 152 153 154 element

type

0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 I 1 1

0 0 0 0 0 0 0 0 0
52 1 1 1 1 NA 1 1 1 1

2 2 2 2 2 2 2 2

0 0 0 0 0 0 0 0 0
53 1 1 1 1 NA 1 1 1 1

2 2 2 2 2 2 2 2

0 0 0 0 0 0 0 0 0 0
61 1 1 I 1 1 1 1 1

62

63

71

72

jmp

0 0 0 0 0 0 0 0 0
1 1 1 1 NA 1 1 1 1
2 2 2 2 2 2 2 2

0 0 0 0 0 0 0 0 0
1 1 1 1 NA 1 l 1 l
2 2 2 2 2 2 2 2

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
NA
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Table 6 (2 of 2). Admissible values ofjtran (transformation option) for each spectral response

type (jresp) and element type (NA = response type not available).

g

3 7 10 ll 75 98 151 152 153 154 dement ]

Itype

0 0 0 0 0 0 0 0 0

73 NA

0 0 0 0 0 0 0 0 0 0

81

0 0 0 0 0 0 0 0 0

82 NA

0 0 0 0 0 0 0 0 0

83 NA

91

o o o o o o o o d o

92

93

96

0 0 0 0 0 0 0 0 0

NA

0 0 0 0 0 0 0 0 0

NA

jresp i

0 0 0 0 0 0 0 0 0

I I 1 I NA 1 I I i

2 2 2 2 2 2 2 2
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Available components for spectral problems

1) If juan = 0 (no transformation), then

All usual components are available (including component #0

i£ it happens to be defined)

CXC_3_

component #0 is not available for jresp = 72, 73, 82, 83, 92 or 93.

2) Ifjtran = 1 (rotation), then

Component #0 is available (if it happens to be def'med).

Other components ( 1 , 2, ..., etc. ) are available in the

new user-defined cobrdinate system.

3) I.fjtran = 2 (principal values), then the available components are

O = effective stress or effective strain

I = minimum principal stress or principal strain

2 = intermediate principal stress or principal strain -

3 = maximum principal sU'eas or principal strain

4 = maximum shear stress or maximum engineering shear strain

except for element types 3 and 151 when jresp = 52 or 62, in which case the available

components are

0 = effective strain

1 = minimum principal strain in the xy-plane

2 = returned as zero

3 = maximum principal strain in the xy-plane

4 = maximum engineering shear strain in the xy-plane
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5.0 NESSUS/RISK

A risk module has been added to NESSUS that will compute the risk with respect to cost,

performance, and a user-def'med criteria.

COST

Risk with respect to cost is computed using the formula

Risk/Cost = Co(x) + Pr(x)* C(x) + (l-Pf)*NC(x)

where x is the allowable response in a reliability analysis such as stress, displacement, cycles to

failure, Co is the initial cost as a function of x, Pf is the probability of failure as a function of x, and

NC(x) is the probability of nonfailure as a function ofx. The P,(x) curve may be the CDF computed

by NESS US; however, in general, x can be any design parameter including non-random variables.

The four functions, Pf(x), Co(x), C(x) and NC(x) are defined with appropriate keywords

defined below. The failure function, Pf(x), is defined in table form using the *xPr keyword. The

three cost functions, C0(x), C(x), and NC(x) are defined using the *crm_ keyword. The XPF and

CFUNC x values do not have to coincide. The output points, x, at which the risk is to be computed

are defined with the *xco_y'z keyword. The output points do not have to coincide with the failure

function or cost function points. RISK will interpolate linearly the failure function and cost function

values to use in the equation for risk. However, no extrapolation is allowed; therefore, the output

points must lie within the failure function and cost function data.

Example:

The user has computed a Pf function which is the probability of failure of a structure as a

function of a member area, A. Thus, x is the member area A. (Note, in this example, x is not a

PFEM response.) The initial costs are assumed to vary linearly with A. The cost of a failure is

assumed to be independent of A; thus, the cost function, or consequences function, is assumed to

be constant with A. The cost of nonfailure is also assumed to be constant with A, although at a far

less magnitude than the cost of failure function. The user desires the risk at a ntunber of points

between the areas 0.1 and 1.0.

The input file would look like:

*RISK

C

C

C

C

to run risk stand-alone, start file with *RISK

con_nents are allowed

define the probability of failur? function

five points will be used
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*XPF

*TABL

0.05

0.3

0.5

0.7

1.0

*END

C

C

C

*COST

*CFUNC

0.1 2.0

0.5 3.11

1.0 4.0

C

.999

•980

.950

.925

.9

define cost functions

three points will be used

3

50. 1.0

50.1.0

50. 1.0

C

C

C

*XCOUT

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

*END

C

*END

indenting is allowed

define the output points

(areas for which risk is to be computed)

ten points are _sed
i0

end cost input
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PERFORMANCE

A second analysis method in RISK is based on performance. In this approach, the risk with

respect to performance is adjusted by changing the primitive random variables to meet a

user-specified probability of failure at user specified design values x. This is, in essence, part of the

design process.

The input requiremems are the P, function which can be computed automatically by PFEM,

the random variables statistics and probabilistic sensitivities, and the design requirements. The Pr

function is input with the *xPr keyword as before. The random variable statistics and probabilistic

sensitivities are input with the *avD-.rzm: key'word. The design requirements are input under the

,Pr-aro_cv. keyword by using the *vaxQ and *Dvaa keywords. NESSUS/RISK will compute

the necessary changes in the random variable means and standard deviations needed to meet the

requirements. Each random variable will be adjusted independent of the others, and the mean and

standard deviation are adjusted independently.

The algorithms used in RISK are described in theOCT. i991 PSAM monthly, Appendix C.

Assumptions:

The user should be aware of the assumptions involved in the implemented algorithms. First,

for nonlinear functions and nonnormal distributions, the computed design changes are only a fast

order estimate. An iterative process is needed for an accurate solution, as.outlined in the technical

wdteup. Second, the probabilistic sensitivities are assumed constant, whereas, in general they will

vary over the range of the failure function. It is assumed that when utilizing RISK/Performance,

the user will be focusing on a specific area of the failure function, e.g., left tail, and the probabilistic

sensitivities will be approximately constant. Third, the technical writeup details an a/godthm for

a variety of nonnormal distributions. In this version of NESSUS/RISIL a normal distribution is

assumed for all random variables.

Example:

This problem has two random variables, x,, x2 with statistics

_t, = 25. ¢y, = 4. normal distribution

i-h = 10. Ol = 3. normal distribution

and probabilistic sensitivity factors

oh = -0.8 oh = 0.6

The failure function is deirmed by two points in the left tail.
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x = I P.f- 1.35E-3
x=2 Pf=0.1

The design requirements are:

P, - 233E--4 at x = 1
and

Pt= .001 at x = 1.5

Both the mean and standard deviation will be changed independently to meet the design requirements
if needed.

The input t"de would look like:

*RISK

*PERFORMANCE

*DREQ

1.0 2.33E-4

2.0 0.001

C

C

*END

C

*XPF

*DVAR

*TABLE

1.0

2.0

2 two

both mean

BOTH

*END

C

C

C

C

*RVDEFINE

*DEFINE

25.

-0.8

*DEFINE

10.

0.6

*END

C

C end

*END

USER

points are requested

define random

note : presently

1

4. NORMAL

2

3. WE IBULL

risk input

and sigma to be varied

2 two points used

variables

all ran vats assumed normal
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An option for a user-defined criteria for risk is provided through a user-written subroutine,

USRRSK. The Pf function defmed by *xPr and the random variable statistics defined through

*RVDErZNE can be used. This option can be used when running risk stand-alone or with PFEM.

A copy of USRRSK is given below.

C

SUBROUTINE USRRSK (IERROR)

IMPLICIT REAL*8 (A-H, O-Z)

PARAMETER (MRANV'100)

PARAMETER (MAXNP - I00)

C

********************************************************************

C ** USER-DEFINED RISK **

C ** THIS SUBROUTINE IS ACTIVATED BY THE *USER KEYWORK IN A **

C ** NESSUS/RISK INPUT FILE. THE *XPF AND *RVDEFINE INFORMATION **

C ** CAN BE USED WITH THIS OPTION. **

C-_mw_mmolmm_m_.

C

C

c

C

COF_4ON

1

2

I ALGEM I ICREAD, ILPRNT, JLPRNT, ICONSL, IPOSTF, ISCRAF,

IPLOTB, IRSTRT, JCREAD, IRVBIN, IDBASE, IRVDEF,

PIDUM ,LINE ,LINE2

CO_ON

+

+

random variable definitions

IRVDEFI/ NUMRVS, LRVNUM (MRANV), RVMEAN (MRANV), RVSDEV (MRANV),

LRVDST (MRANV), RVLLMT (MRANV), RVULMT (MRANV),

LRVNMK (MRANV}, RVCOEF (9,MRANV)

CO_ON /RVSENS/ ALPHA

DIMENSION ALPHA(MRANV)

C

C probability of failure input

C_N / XPFCN / XPF, NXPF,XPFNEW

C

C

C

C

C

C

DIMENSION XPF(MAXNP,2),XPFNEW(MAXNP)

C variable description

********************************************************************

C ICREAD - input unit to read from

ILCONSL - write to screen

ILPRNT - output file

XPF(I,J) - failure function

- row I is _ value
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C

C

C

C

- col j is pf value

NXPF - number of XPF points

C

C

DESCRIPTION OF COMMONS: /RrDEFI/ AND /RVNAME/

HOLDS THE INFORMATION READ IN FROM THE *DEFINE INPUT DATAC

C

C

C

C

C

C

C

C

C

C

C

C

C

C

IRFDEFI/ Nt_4RVS - NUMBER OF RANDC_ VARIABLES

fRFDEFI/ LRVNUM - RANDOM VARIABLE NUMBER

fRFDEFI/ RVMEAN - MEAN

fRFDEFI/ RVSDEV - STANDARD DEVZATION

fRFDEFI/ LRVDST - DISTRIBUTION

IRFDEFI/ RVLLMT - LOWER LIMIT (ONLY FOR LRVDST m 6,9,10}

fRFDEFI/ RVUI/4T - UPPER LIMIT (ONLY FOR LRVDST - 6,9,10)

fRFDEFI/ LRVNMK - NUMBER OF COEFFICIENTS (ONLY FOR LRVDST - 6,7)

/RFDEF_/ RVCOEF - COEFFICIENTS

IRVNAMEI RVNAME - RANDOM VARIABLE NAME

ALPHA(1) - prob. sensitivities of random variables I

C IERROR - ERROR INDICATOR

IERROR - 0

C I I I I I I I II I

C

C

C

C

C

C

C,

C

C

C

USER-DEFZNED RISK
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Executing Risk

NESSUS/R/SK can be executed stand-alone or in an automated analysis with PFEM.

RISK Stand-alone

Begin input file with *RISK keyword. All input must be in input file.

RISK with PFEM

In this instance, the risk analysis will be performed after a PFEM analysis. The RISK input

must appear at the end of the usual PFEM input file. A schematic of the input file is given below.

*PFEM

PFEM input data

*END

C---ww-_---gw----

*FEM

FEM input data

*END

*FPI

FPI input data

*END

C- ......

*RISK

RISK input data

*END

When coupled with PFEM, the RISK Pf function def'med by *xPr will be the CDF computed

by PFEM. All other data must be supplied in the RISK input data section. In procedural terms,

the steps that will be taken are:

I) PFEM will compute the CDF using the AMV+ algorithm, etc., exactly as before.

2.) PFEM will write a RISK input f'ile and insert the computed CDF under the *xPr keyword.

3) RISK will be caUed to compute the risk With respect to the user requirements.

4) PFEM will proceed to the next node, increment, mode, etc., and steps 1-3 will be repeated

according to the input t-de.

All of this is fully automated from a single input f'de. The risk output will appear in the

jobname, out file.
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RISK Input Format

RISK will compute the risk with respect to cost, performance, and a user-defined criteria.

Currently, risk can be computed for only one of the analysis types in a single analysis.

There are currently six major keyword sections in RISK. They are: *azsK which must precede

all otherriskkeywords, *cos"e, *t, rawommm:g, *_sn, *re, r, *mn_rar_mg. *_,,zsKmustprecede

these keywords. As with other NESSUS input modules, only the first 4 characters are significant;

the input ks column independent and the order is unimportant.

Summary of RISK keywords

*xPr -indicatesthe beginningof thefailurefunctiondefinition.

*RwErzNr. -intlicatesthe beginningof therandom variabledefinitionsand sensitivities.

*COST - signifies the risk cost algorithm is to be used.

*_zRrom,_AnCZ - signifies the risk performance algorithm is to be used.

*USER - signifies a user-defined risk algorithm is to be used.

*zm_ - ends the risk input dataftle.

A schematic of the risk keywords is given below.

*RISK

*XPF

*TABLE

*END

*RVDEFINE

*DEFINE

*END

*COST

*CFUNCTION

*XCOUT

*END
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*PERFORMANCE

*DREQ

*DVAR

*END

*USER

*END

*END

*XPF

*x_r signals the start of the def'mition of the failure function. This function is defined in

terms of a variable x and a probability of far'lure. This function can of course represent a CDF

computed from NESSUS but need not. The XPF data can be used with any risk analysis type.

*xPr itself has subkeywords used to designate the input format. Currendy, NESSUS 5.0 is

limited to tabular input only. The subkeywords for XPF are *TJmT-t and *row. *TaaSxaBis used to

signify tabular input and *_.ND is used to signify the end of the XPF data.

*TABLE npts

Signifies that the input is to be in tabular form.

npts signifies the number of points in the table.

*END

Signifies the end of the XPF data.

For example, an XPF curve defined by 5 points would be hnput as
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*XPF

*TABL 5

Xl PFI

X2 PF2

X3 PF3

X4 PF4

X5 PF5

*END

where x's ate the variabie points and the P,'s are the corresponding probabilities of failure.

always, the keyword section is closed with a tram.

As

*RVDEFINE

This section is used to define the mean, standard deviation, distribution type, and probabilistic

sensitivity for each random variable. This information is nece,_, for the risk performance

algorithm, but can be used by any analysis method. The input format is similar to that used in the

RVDEFINE section of PFEM.

The subkeywords for the RVDEFINE section are: *vsrxmc and *racy.

*DEFINE

mQ&n

alpha

iEvnum

sider dist

This keyword signals the definition of the random variable mean, standard deviation,

distribution type, and probabilistic sensitivity factor for r, udom variables, irvnum.

i_:vnum is the random variable number.

mean is the random variable mean value.

sealer iS the random variable standard deviation.

disc is the random variable distribution type.

alpha is the random variable probabilistic sensitivity factor.
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*DEFINE isrepeated numzv times, where numrv isthe number of random variables.

*END

Signifies the end of the RVDEFINE data.

As an example, for a problem with 2 random variables, the RVDEFINE section might look like

*RVDEFINE

*DEFINE

25. 4.

-0.8

*DEFINE

10. 3.
0.6

*END

1

NORMAL

2

_IB_L

*COST

This section signals that the cost algorithm will be used. The subkeywords for the COST
section are: *CrmCCT'rON and *xcotrr and *gND.

*CFUNCTION ncpt s

x_ c0_ c_ ncx i-i, ncpts

This keyword signals the input of the cost function input.

ncpts is the number of cost function entries.

The input is in four columns: x value, initial cost at this x, cost at this x, and noncost at this x.

x_ is the x value point.

cO_ is the initial cost at xl.

c_ is the cost of failure at :%.

nc_ is the cost of nonfailure at x I.
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*XCOUT nxcpt s

xt i.-1, nxcpt s

This section signals the definition of the user-deEmed output points.

nxcpt a is the number of output points.

x_ is the x value of the output points.

*END

Signifies the end of the COST data.

*P E RF ORMANC g

This section defines the keywords for computing the risk with respect to performance. The

subkeywords for the COST section are: *vvaa and *Du_ and *aND.

*DREQ ndrpts

x, Pf_ i-1, ndrpt s

This keyword is used to input the design requirements wldch consist of required probability

of failure at a design value x.

nd_es is the number of design requirement input points.

x_ is the design value.

P_ is the required probability of failure at x_.

For example, if the requirements are a probabiIity of faiIure of 0.001 at x=10, and Pt = 0.002 at

x=20, the input would be:

*DREQ 2

10. 0.001

20. 0.002
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*DVAR desvar

This keyword indicates which variable, (mean, or standard deviation, or both) to alter to meet the

requirements. The mean or standard deviation is modified independently.

desvar = 'MEAN', 'STDEV', or 'BOTH'

*END

Signifies the end of the PERFORMANCE dat_

*USER

This keyword signifies that the user-clef'meal subroutine USRRSK will be called. The XPF

and RVDEFINE data sections can be used with USER.

*END

Signifies the end of the USER data.

*END

Signifies the end of the entire risk input file.
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Appendix B.I

A Review of Fatigue Models

University of Arizona

A REVIEW OF FATIGUE MODELS
The limit state expressions and reliabilityanalysis strat_Bies
relativeto the models.

by

¢. J. Kunu

Paul it. Wirs©hing

The University of Arizona
Tucson. AZ 85721

STRESS BASED FATIGUE LIFE PREDICTION

C-I The characteristicS-N curve;constantamplitudestress:no

endurancelimit,mean stress:notcheffects:multiaxialstress.

C-2 Multi-linearS-N curve(includesendurance limit);constant

amplitudestress

C-3 The modifiedGoodman model; constantamplitudestress:

includesbothfatigueand yieldfailuremodes.

¢=4 The generalS-N curve(non-linear)representationoffatigue

strength,e.g.,MIL-HDBK-5E; constantand variableamplitudestress:
mean stress.

C-5 CharacteristicS-N curvewith no endurance limit:variable

amplitudestresses;lineardamage accumulation;generalvariable

amplitudestress;stationaryGaussianprocessesincludingbothnarrow
band and wide band; mean stress.

C-6 CharacteristicS-N curvewith no endurancelimit,_,ariable

amplitudestressesincludingsequenceeffects:generalvariableamplitude

stress;stationaryGaussianprocessesincludingbothnarrow band and

PI_ECED_&G P,A_E BLANK NGT Fi_.MEC _



wide band: mean stress.

C-7 MultUinearS-N curve;variableamplitudestresses;no

sequence effects

STRAIN-BASED FATIGUE LIFE PREDICTION (Local Strain

Analysis}

L-I The highcyclecomponent ofthegeneralstrainlife

relationship:constantamplitudestress:mean stress:notcheffects:stress
endurance

L-2 The generalstrain-liferelationshipand low cyclefatigue:

constantamplitudestress;mean stress:stressrelaxation

L-3 Low cyclefatigueunder random stresses:no sequence
effects;mean stress;stressrelaxation

TIlE FRACTURE MICIIANICS MODEL TO DESCRIBE FATIGUE CRACK

PROPAGATION (subm'iUcal crack growth)

F-I Parislaw todescribefatiguecrackgrowth; no threshold

level:constantamplitudestresses;mean stress,

F-2 Parislaw todescribefatiguecrackgrowth: no threshold

level;variableamplitudestressesincludingstationaryrandom processes:

equivalentstresses

F-3 Parislaw todescribefatiguecrackgrowth: thresholdstress

intensityfactor;variableamplitudestressesincludingstationaryrandom

processes;equivalentstresses

F-4 Polynomialmodels todescribefatiguecrackgrowth;variable

amplitudestresses:equivalentstresses

F-5 Crackgrowth modelsforvariableamplitudestresseswhere
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sequence effectsare important; computer codes for cycle-by-cycle

counting.

111G11 TEMPERATURE, LOW CYCLE FATIGUE (synergistic effects of

creep and fatisue)

11.=I Linear and ellipticalrule; constant amplitude stress

11=2 Frequency modeled strain;constant amplitude stress

11,-4 Strainrange partitioning;constant amplitude stress
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C-1 Characteristic S - N Curve

High Cycle Fatigue (Constant Amplitude Stress)

• Model for strength

log51

logN

Cycles to failure

N = AS-"

Parameters :

Applied stress range, S

Fati_e strength coe/_cient, A

Fatigue strength exponent, m

• Assumptions and Comments

I. Cycle life.N > 10s.

2. Smooth surface.(nocracks)

3. No aggressive corrosion.

4. No creep. (high temperature e_ects)

5. No endurance limit.

6. Constant amplitude stress.

• Uniaxial Stresses

can be stressrange _r or stressamplitude #.
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Mean stress models

where

Soderberg's linear model

Goodman's linear model

Morrow's linear model

Gerber's parabolic model

Elliptic model

_r a 0' m

S"-_ +'-_v --1

O'.,.._a O'ra

SN + _-:- ----1

Ga Gm

s";+ - 1

_N+ =1

am : mean stress

Sm : ultimate strength

SN : fatigue strength at N cycle

S V : yielding strength

• Multiaxial Stresses ("a" or "m" indicates amplitude or mean of the stress com-

ponent.

V/1 )_ + (",o -- ",°)_ + (",m -- ",.)_ + 6(_',2,° + "_,o + "Lo)]_',= _[(,,,° -,',°

E--_"= O"zm "k O"gm -b O',m

as, 1 - -_.
equivalent completely reversed uniaxial stress

• Reliability Considerations :

let rn - constant, A - a random variable describing the variability in material

behavior.

a.) Failure when (N < N0) - (A < NoS"); where No is design Life; and N is

cycles to failure, a random variable (maybe difficult to formulate in some

cases). Probability of failure is P! -- P,.[A < NoS"]
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b.) Failure when (S < o) It _ven No

st

No
I r

N

P/= P,[¢>_

ffiP,.[o"> (._o)_]

Note : Here S and A are random variables. Typically Cs _ 10%

• References

[1] Collins, J. A., Failure of Materials in Mechanical ]_¢_ifn,

John Wiley & Sons, 1981.

[2] Shigley, J. E., Mechanical Enzineerinz Desizn, McGraw-Hill, 1972.

[3] Dowling, N. E., "Deformation, Fracture, and Fatigue of Engineering Mate-

rials," Virginia Polytechnical U., 1989. (manuscript in development)
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C-2 Multi-Linear S- N Curve

(Under Constant Amplitude Stress)

• Basic Assumptions:

1. Stress is constant amplitude having amplitude (or range), u. The mean stress

is O m ,

2. Stress modeling error is given by the random varible B so that the actual

stress is a random variable,

O _ BO o

where o r is the estimate of stress, S, using the best predictive method.

3. The service life is given as No.

4. Fatigue strength is defined by a multilinear S - N curve.

• Model forfatiguestrength

Sk

Sk-i

S_

So

S

,ii iiiiii-i 
log-logscale

N
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N S"_'- At,

N S"_ ---A2 ,

N 5 _s = A3,

forSo <_.S< $1

forSl _<S< $2

for S2 _< S < Ss

NS "_ = At, for St-l _< S < St

or, in general form,

NS"' = A_, for S_-l <_.S < Si i = 1,2, 3,..., k

where
S : applied stress range or amplitude

A_ : fatigue strength coefficient

m_ : fatigue strength exponent

Let So -- 0 and S¢_ - oo.

• Mean Stress ERects:

If am > 0, then the fatigue strength should be

A,= m'

where A0_ is the fatigue strength coefficient for the ith segment for zero mean

stress.

• Reliability Consideration:

1. The event of failure prior to completion of the service life No is [a < S]

2. The probability of failure is

P! = Pr[a < S]

Reliability prediction can be made by Wu/FPI or AMVFO.

• Comments:

1. Existence of endurance limit.

108



If an endurance limit exists, then the linear section representing the

endurance limit is in the form of/VS "_z : A1 with AI = co. Thus the

first term of Eq. 1. vanishes. Eq. 1. will not lose its generity with

the existence of the endurance limit.

• References

[1] Wirsching, P. H. and Light, M. C., "Fatigue Under Wide Band Random

Stresses," Journal of the Structural Division, ASCE, Vol. 108, No. ST7,

pp.1593-1607, 1979.

[2] Wirsching, P. H., "Considerations of Probability Based Fatigue Design for

Marine Structures," Marine Structure, 1 (1988) 23-45.

[3] Wirsching, P. H., "Fatigue Reliability for Offshore Structures," Joum_ of

Structural Ent_ineering, vol. 110, No. 10, Oct. 1984.

[4] Collins, J. A., Failure of Materials in Mechanical Desi_'n,

John Wiley & Sons, 1981.

[5] Dowiing, N. E., "Deformation, Fracture, and Fatigue of Engineering Mate-

rials," Virginia Polytechnical U., 1989. (manuscript in development)
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C-3 Modified Goodman Model

High Cycle Fatigue

Combines Fatigue and Yield Failure Modes

(Constant Amplitude Stress)

. Model for Strength

Modified Goodman range-of-stressdiagram for fatiguefailurein N cycles.
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a_ -- alternating stress amplitude

am -" mean stress

Gmlz --Gin + _i

Gmi n = G m -- Ga

am : mean stress

S= : ultimate strength

SN : fatigue strength at N cycle

Sy : yielding strength

• Failure Prediction Equations :

a=.,-2a= > $,,

_mu -- am _ SN,

ant..- (I- r)ant_>SN,

for - Sj _<ant _<(SN -- S_)

for (SN - S,) _<ant _<0

for 0 < ant < (St- SN)
-- -- (1 -- r)

amaz>Sy)

where r = SN/Su

• Reliability Considerations :

PI = P_[Sy < a°- a=],

P! - P_[SN < a,],

P! = Pr[SN < ram -I-a.],

P! --- PrIS, < "m + a.], for ((_

Note: For reliability analysis, let all parameters

g-function

for (S_ --SN) _<a=_< S,(I-_)

for - _'y _<< am _<< (SN -- Sy)

for ( S N -- Sy) << ant < 0

for 0 _ am _< (S, - SN)

(l-r)

- SN)
--r) <_ant <_S,

be random variables. Formulate

g = S, -- (a. -- ant)
g -" SN -- aa

g -_ SN -- (rant "at- ffa)

g = S,-(ant +a.)
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Numerically, use AMVFO to estimate P! --F e ffi0

• Reference

[I] Collins, J. A., Failure of Materials in Mechanical Design,

John Wiley &: Sons, 1981.
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C-4 The General $- N (Non-Linear) Representation of

Fatigue Strength; Constant and Variable Amplitude Stress

Case C-1 summarized the characteristic $ - N curve, linear in log-log space.

But sometimes fatigue strength data is non-linear. This is the case for strain-cycled

data (see Case L-2). An example is shown in Fig. 1. Possible models are,

log N = ,4o + _ A_e ='

iml

log N ffi ,40 + _ A_(log e) °'

A_ and ai are empirical constants of material

(i)

(2)

aJ

0

t_

O
w

it#

O

Fig. I. Non-Linear S - N Relations.

logN

Note: "Pseudo-stress," Sp = Ee is often plotted even though the

material is in the plastic range and Sp is not equal to the

stress.

For a reliability analysis, it would be necessary to express the parameters as

random variablesi as a practical matter, the scatter in data might be represented

by only one or two random variables.

Other examples of non-linear fatigue strength data are shown in Fig. 2 and

Fig. 3. Fig. 2 is a typical description of fatigue behavior given in MIL-HDBK-SB
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Fi_. 2. Typical constant-li_e dia_'am for f_ti_rue behavior of various

wrought products of 2024-T4 Sh, mln,,rn alloy.
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F;9.3
: : ; : : ;
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1111

ii
.... •

Fig. 3.

B_t-fit S� N curves for notched, £f = 2.0, 2024-_ z/smsmwn alloy skeet

longitudinal direction.

Product Form: _ sheet, 0.000 inch
i

Properti_: TUS, ksi TYS T ksi

73 54

73

Temp. TF

RT

(unnotched)
RT

(notched K,
: 2.0)
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Test Parameters:
i

Loading- Axial
Frequency - 1100 to 1800 cpm

Temperature- RT
Environment - Air

No. ofHe.au/Lots: Not specified

Equivalent Stress Equation:

Log Nf = 9.2-3.33 log (S.q - 12.3)
s. : s_ (_-RF."
Standard Error of Estimate = 0.27

Standard Deviat/on in Life = 0.89

R_= 91%

Sample Size = 113



for various materials. Note that mean stress and stress concentration dects are

included. The "newer" representation of fatigue strength is that of MIL-HDBK-SE.

The S - ._" curve is plotted as maximum stress versus fatigue life, with the mean

stress specked as illustrated in Fig. 3. Note that in Fig. 3, the non-linear mode] is

of the form,

losN = A0- A, los(S - A2) (3)

where the Ai are empirical constants of the material.

• For variable amplitude stress, Miner's damage rule (assuming no sequence

effects) is used for the representation. The variable amplitude stress process

is represented in block loading as follows:

number of

Block

1

2

3

const, amp.

applied cycles stress level

nl $1

n2 5"2

na $3

nl, Skk

The accumulated damage is,

D= EDi
iml

k

where

D : accumulated damage factor

Di : damage factor due to each block loading

N($i) : number of cycles to failure for that

: stres level and mean value

(4)

• Reliability Considerations:

1. Failure events are:
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a. [N < No] for constant amplitude stress process; where No is design

life.

b. [D > A] for variable amplitude stress process; where A is damage at

failure.

2. Probability of failure:

a. P! = Pr[N < No]

b. PI = Pr[D > A]

Parameters associated with N and D, and No, A may all be ran-

dom variables. The reliability analysis can be made using Wu/FPI or

AMVFO.

• References:

[1] Bannantine, J. A., Comer, J. J., and Handrock, J. L., _undamentals of

Metal F_¢iL,ue Analysis, Prentice-HaU, 1990.

[2] U.S. Department of Defense, MIL-HDBK-5.
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C-5 Characteristic S - N Curve

Variable Amplitude Stresses

• Fatigue damage

Parameters :

Fatigue damage, D

D = AE[S']

Total number of cycles, n

F_tigue strength coe_cient, A

F_tigue strength exponent, m

Applied stress range, S

(El.] denotes the expected value)

• Assumptions:

1. Miner's rule applies. (No stress sequence effects)

2. Basic fatigue curve is NS m = A. (no endurance limit)

3. Stationary and zero mean stress processes.

4. The spectral density function of stress process is given, W(f).

5. Time of application of stress process is T.

• Information obtained from W(f)

1. kth moment of W(f), mk- fo /_W(f) d.f

2. root-mean-square of the process, a -

3. expected rate of zero crc6sing with (-I-) slope, no - _/m2/mo

4. expected rate of peaks, np - _r'_i/m2

5. irregularity factor, a = no/np

6. spectral width parameter, e ---

• Case A : Stress process is stationary, Gaussian, and narrow band.

Probability density function of stress range SR

r for O<r< Is,,(,') =
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Fatigue damage factor

n m m

DNS = _(2V_a) r(_ + I)

in which F(') denotes gamma function. Here A is based on stress range. If

A is based on amplitude, use (V_a)" to replace (2V_)".

• Case B : Stress process is stationary, Gaussian, and wide band.

1. Equivalent narrow band approximation (Wirsching and Light, 1979)

Dws = A(m, e)D.v,NB

where

roT ., m
De,,NB _- --_--(2V_) F(_- 4-1)

_(m,,)= .(m)+ [I-_(m)](1- .)_-_

a(m) = 0.926 - 0.033m

b(m) = -2.323 + 1.587m

2. Equivalent narrow band approximation (Ortiz and Chen, 1987)

where

DWB = A_Deq,NB

_2

;gk= I/ m2mk
V momk+2

2.0
k----

ff/0.86

3. Local range cycle counting (Ortiz, 1985)

npT ., m
DWB= A (2V_aa) F(-_- +1)

• Mean stress effect
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If the stress process has a non-zero mean, replace A by A*. Using the Good-

man correction

s.

where A0 is obtained from zero mean test; S_ is the mean stress; and S. is

the ultimate strength of the material.

• Reliability Consideration :

1. The event of failure is [D > A] where A is damage at failure, in general a

random variable[4].

2. The probability of failure is

P! = P_[D > A]

where D = D(A, m, S, n, W) all of which could be random. Obtain solution

by Wu/FPI or AMVFO.

[I] Ortiz, K. and Chen, N.K.,"F_tigue Damage Prediction for Stationary Wide-

band Random Stresses," ICASP 5, Fifth Internationai Conference on Ap-

plications of Statistics and Probability in Soil and Structural Engineering,

Vancouver, Canada, May 1987.

[2] Wirsching, P. H. and Light, M. C., "Fatigue Under Wide Band Random

Stresses," Journal of the Structural Division, ASCE, Vol. 108, No. ST7, pp.

1593-1607, 1979.

[3] Ortiz, K., "On the Stochastic Modeling of Fatigue Crack Growth," Stanford

Ph. D. Dissertation, 1985.

[4] Wirsching, P. H., "Fatigue Reliability for Offshore Structures," Journal of

Structural Engineering, vol. 110, No. I0, Oct. 1984.
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C-6 Characteristic S-N Curve With No Endurance Limit; Variable Am-

plitude Stresses Including Sequence ERects; General Variable Am-

plitude Stress; Stationary Gauss|an Processes Including Both Nar-

row Band And Wide Band; Mean Stress.

• This case of fatigue models, which accounts for variable amplitude stresses

including sequence effects in a characteristic S - N format, is still under

review (see also Case F-5). In practice, sequence effects are ignored in life

prediction estimates in most application.
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C-7 Multi-Linear S- N Curve

(Under Variable Amplitude Stress)

• Basic Assumptions:

1. Stress sequence effects are negligible.

2. fs, the probability distribution function of S, is known.

3. Miner's rule applies.

• Model for fatiguestrength

Sh

S3

Sl

So

S

\

iiiiiiiii 
log-log scale

N

NS ml -" A1,

NS ''_ = Az,

N S "s = A3,

for So < S < Sx

for S_ < S < $2

for S2 < S < S3

NS"' = At, for St-i _< S < St

or, in general form,

NS"' =A,, forSi_l <_S<Si i=1,2,3,...,k
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where
S : applied stress range or amplitude

Ai : fatigue strength coefficient

ml : fatigue strength exponent

Let So = 0 and So= = oo.

• Fatigue Damage, D [1]:

D = AE[S=]
n _' m

.f $( , ) d8

where n is the number of cycles of the applied stress range, E[-] denotes the

expected value, f_ is the domain of stress range, and fs(s) is the probability

density function of S.

• For multi-linear S - N curve, fatigue damage, D can be expressed as [2]:

o =  EtS"] +   ts"I +.-.+

t s_

_i ni _ sm' fs(a) d.s

,m"/s( s )d,

(1)

• Mean Stress Effects:

If em > 0, then the fatigue strength coefficients, Ai, using Goodman correc-

tion, should be

A, = Ao, [1 -- .__= ] m,

where A0i is the fatigue strength coefficient for the ith segment for zero mean

stress, and S= is the ultimate strength of the material.

• Reliability Consideration:

1. The failure event is [D > A] where A is damage at failure. In general, both

D and A are random variables.
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2. The probability of failure is

P! - Pr[D >_.A]

Reliability prediction can be made by Wu/FPI or AMVFO.

* Comments:

I. Existence of endurance limit.

If an endurance limit exists, then the linear section representing the

endurance limit is in the form of NS m_ -- AI with As -- co. Thus the

first term of Eq. 1. vanishes. Eq. 1. will not lose its generity with

the existence of the endurance limit.

2. Stress range is WeibuU distributed. The WeJbull distribution has the promise

of being a generic loading model for a wide variety of structures.

where _ = Weibull shape parameter and 6 -- Weibull scale parameter.

Substituting this pdf into Eq. 1. and making variable transformation, one

may obtain the fatigue damage, D:

k f_,T,D -- E r_ 5m' t4'-le -t dt
iffil Ai -t

where

rni

a_ -- --_- + 1

Note that the integrand is in the same form as that of Gamma function.

t References

[1] Wirsching, P. H. and Light, M. C., "Fatigue Under Wide Band Random

Stresses," Journal of the Structural pivision, ASCE, Vol. 108, No. ST7, pp.

1593-1607, 1979.

[2] Wirsching, P. H., "Considerations of Probability Based Fa.tigue Design for

Marine Structures," Marine Structure, 1 (1988) 23-4,5.

[3] Wirsching, P. H., "Fatigue Reliability for Offshore Structures," Joum_ of

Structural En_neer_n[, vol. 110, No. 10, Oct. 1984.

I41 Collins, J. A., Failure of MateHa/s in Mechanical Desic,_,

John Wiley & Sons, 1981.
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L-1 The High Cycle Component of the General
Strain-Life Relationship

(Constant Amplitude Stress)

• Definition of high cycle fatigue :

There is no sharp transition from low cycle to high cycle fatigue. But typi-

cally, cycles to failure greater than 104 or 10 s is considered to be high cycle

fatigue.

• General strain-life curve:

The strain amplitude e° corresponding to N cycles to failure is

where

E° "

(ee)a "

:
E:

a}:

strain amplitude, eo - _-, where Ae = strain range

elastic strain amplitude

plastic strain amplitude

¥oung's modulus

fatigue strength coefficient

b : fatigue strength exponent

e_ : fatigue ductility coefficient

c : fatigue ductility exponent

N : Cycles to failure

(1)

• In high cycle fatigue, the plastic strain is negligible. Thus

But

(2)

(3)
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Therefore, itisobtained

_= _tT,) (4)

where S= is the fatigue strength associated with N cycles.

Note that Eq. 4 is exactly the same form as the basic fatigue relationship

(described in C-1)

NS= =A (5)

where

1

.,= -_ (6)
1 , _

A = _(_,)¢ (7)

• Reliability Consideration :

The event of failure is

1. [a= > Sa] where aa is the applied stress amplitude. In general, both

aa and S= are random variables.

2. [N! < No] where No is the intended service life.

The probability of failure is

1. P, = P,[a. > s.]
2. P! = Pr[N < No]

The reliability estimates can be solved by Wu/FPI or AMVFO.

• How to Account for Mean Stresses ?

Let am -- applied mean stress

1. Morrow's model [1]:

Or, in another form

e= = (,r_ - a,,.
E )(2N)*

S. = Ee=

- (a_ - a,.)(2N)*

s= )÷

(8)

(9)

(10)
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2. Manson and Halford model [2,3] :

where k., is the mean stress factor to be determined empirically.

the above equation in another form,

(11)

Express

= (o'_ - kmo'm)(2.N') b

1 so )tN = _(._ _ k...

(12)

(13)

The Goodman correction can also be applied to these models. Adjust A, as

defined above,

O'm _m

A = A0(1 - -_-_-, (14)

where
1

.4o= _,(,_,)-_
Su = ultimate strength of material

• Reliability Consideration :

The event of failure is

1. [a° > So] where era is the applied stress axnplitude. In general, both

oa and S° are random variables.

2. [N < No] where No is the intended service life.

The probability of failure is

1. P! = P,.[_° > S°]

2. Ps = P,.[_v < No]

Obtain reliability estimations using Wu/FPI or AMVFO.

• How to account for stress concentrations (the notch effect)?

Stress concentration factor
t7

_rnom
(15)
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where

K't ---- stress concentration factor

o = local stress amplitude at notch root (point of stress concentration)

S.o_ - nominal stress amplitude

K,S.

(16)

It is obtained

0 ,!

Sa = "_"_t(2N)dr' (17)

1 ,S.Kt .._ (18)

But, a fati_,ue notch factor, KI, is often employed in fatigue analysis. Fatigue

notch factor, K I, is defined as the ratio of unnotched fatigue strength to

notched fatigue strength.

Ky=_
Snotched

(19)

1. Relationship of K! to K, by Peterson [3]:

K! - 1 +(g, - 1) x qp

K, - 1
=1+

1+0

(20)

where a is a material constant dependent on strength and ductility,

determined from long life test data for notched and unnotched sam-

pies, and r is notch root radius.

2. Relationship of K! to Kt by Neuber [4]:

K! = 1 + (K, - I) x qN

K, - 1
=I+

(21)
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where p is a material constant and related to the grain size of material.

Thus, the S_ and N then are in the forms of

I. Prom Peterson :

a_ ](2N)* (22)
s-=[z+_

qP

1[S._ Kl-1N-g (_+ )]
qP

(23)

2. From Neuber :

_ ](21v)' (24)
qN

_r=_ (1+ )1qN

where qp and qN are defined above.

• Comments :

1. For ferrous-based wrought metals, a is approximately by [5]:

3oo .11.8
a - [S_(ksi) j × 10 -3 in.

or using the approximation (St _ 0.5 BHN)

[, 300 ]1.8
= L0.5BHNJ x 10 -s in.

where BHN is Brinell Hardness Number. Thus,

a _ 0.01 in. for normalized or annealed steels (BHN_ 170).

a _. 0.001 in. for highly hardened steels (BHN_. 600).

_ 0.0025 in. for quench and tempered steels (BHN_ 360).

2. Typical values of p can be referred in Juvinall [6].

• Reliability Consideration :

The event of failure is

(25)

(26)

(27)
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1. [_r, > Sa] where _ra is the applied stress amplitude. In general, both

are random variables.

2. [N < No] where N0 is the designed service Life.

The probability of failure is

1. P! = p,[_r, > ...ca]

2. P! = P,[N < No]

Reliability estimate can be solved by Wu/FPI or AMVFO.

• References -"
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Warrendale, Pa., 1968, Sec. 3.2, pp. 21-29.

[2] Yanson, S. S. and Halford, G. It, "Practical Implementation of the Double

Linear Damage Rule and Damage Curve Approach for Treating Cumulative

Fatigue Damage," Int. J. Pmct., VoL 17, No. 2, 1981, pp. 169-172, IL35-R42.

[3] Peterson, R.E., "Analytical Approach to Strese Concentration Effects in Air-

craR Materials," Technical Report 59-,507, U.S. Air Force -- WADC Syrup.

Fatigue Metals, Dayton, Ohio, 1959.

[4] Neuber, H.,Theory of Notch StresJes: Princ@le for Ezact StreJ8 Cakula-

tiona, Edwards, Ann Arbor, Mich., 1946.

[5] Society of Automotive Engineers, Fatigue Design Handbook, Vol. 4, SAE,

Warrendale, Pa., 1968, p.29.

[6] Juvina/1, R. C., Engineering Conaiderations of Stress, Strain and Strength,

McGraw-Hill, New York, 1967.

[7] Society of Automotive Engineers, Fatigue Design Handbook, AE-10, SAE,

Warrendale, Pa., 1988.
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L-2 The General Straln-Life Relationship

and

Low Cycle Fatigue

(Constant Amplitude Stresses)

• Basic Assumptions:

1. Fatigue crack initiation is defined as "fatigue failure."

2. The external loading is constant amplitude.

This method of life prediction is also used by turbine engine manufac-

turers. Clearly, frequency of loading is an important factor. Generally,

as a practical matter, cycle life N is evaluated using a computer code.

One code is Program BROSE, developed at the University of Arizona

(by Y.-T. Wu).

• The general strain-life relationship defines fatigue strength for a cycle life N.

where

ea :

(ee)a :

:
E:

b:

C:

N:

O. I

= -_(2N) b + e_(2N) c (1)

strain amplitude, eo = --_-, where Ae -- strain range.

elastic strain amplitude.

plastic strain amplitude.

Young's modulus

fatigue strength coefficient, to be determined from fatigue test.

fatigue strength exponent, to be determined from fatigue test.

fatigue ductility coefficient, to be determined from fatigue test.

fatigue ductility exponent, to be determined from fatigue test.

cycles to failure
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(i) Pseudo fatigue strength associated with N cycles, S. :

$. = Ee.

= ,_(2N)' + Ee_(2N) c

(ii) Cycles to failure for a given strain range:

The expression for strength is di_cult to invert.

expression is due to Manaon, eta/., [1].

where

Ae ( Ae _=/bl11,
N = NT[(.-_:) ,1© + ,'_eT,, ,

NT (Transition life) - 0.5(--7L_ )
o!

O J

AcT (Transition strain) -- 2(e}) _ (E)-_ _

This approximate

(2)

(3)

(4)

_TT A, I.[-0.889_b)-°"1} I5)= = e=p{P(l. )5 + Q(I._T_T) +

P = -0.001277(b >2 + 0.03893(b> - 0.0927 (6)

Q = 0.004176(b )2 - 0.13500(b) + 0.2309 (7)

• Comments:

1. The empirical constants, i.e. o_, b, e_,,and c are determined by a

fatigue test, but because fatigue testing is expensive, these constants

can be estimated from monotonic tests and cyclic o-e curve as follows:

_t

b_
1 + 5n'

t

b

n I
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where
o'f :

n t .

K t .

true stress at fracture of monotonic test.

cyclic strain hardening exponent.

cyclic strength coefficient.

2. Some rules of thumb:

A_
eo = -- = 0.01 at N- 10 s

2

s,
o'.---- atN--5x 10 5

2

3. b varies from -0.05 to -0.12 with a typical average of -0.085, while c

varies from -0.5 to -0.8 with typical value -0.6.

• Manson's method of universal slope [2]:

This is a more primitive and earlier form of the general strain-life relation-

ship,

eo = 1.75(--._)N -°a2 + 0.5(el)°'eN -°'6

where S. is the ultimate strength of the material, and e I is the true strain

at fracture of monotonic test.

(i) Fatigue strength associated with N cycles, S. :

(ii)

,.,Ca -" E_a

= 1.75S, N -°.12 + 0.5E(ef)°'6N -°'e

Cycles to failure cannot be expressed explicitly, but can be solved numeri-

cally.

• Comment:

The universal slopes method may be a first approximation for the fully

reversed strain-life curve for unnotehed smooth specimens, based on

monotonic tensile properties.

• Statistical Considerations of Fatigue Data

The method of analyzing strain-life fatigue data for the purpose of

reliability analysis and design is described in Ref. 3 and 4. Basically,

the concept is to fix the exponents b and c as constants equal to the
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least squares estimators and _lump" the uncertainty into _ and tl,

which are treated as random variables.

• Reliability Consideration :

The event of failure is :

I. [e > ca] where e is the strain amplitude at the notch. In general, both

e and ea are random variables.

2. [N < No] where No is the intended service life.

The probability of failure is

I. PI = P,[e > e,]

2. PI = P,[N < No]

Numerically, the reliability estimates can be solved by using Wu/FPI or

AMVFO [5].

• Calculation of the Strain Amplitude at the Notch. [see Ref. 6 and 7]

I. Use a finite element program capable of computing the stress and strain at

a notch under plastic deformation.

2. Neuber's rule [8]: An appro_mate method built into local straiu analysis

computer codes for calculating N.

where

0"_ _ Kt2o'n_n

(K,o'n) 2

E

_r: localstressamplitude at notch root.

e : localstrainamplitude at notch root.

Kt : stressconcentration factor.

,7,/:nominal stressamplitude.

en : nominal strainamplitude.

3. Seeger and Heuler's versionof Neuber's rule [9]:

0"_ "- Kp2o'*E *
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where

Kp - (_") at onset of _eneral 7ielding

(an) at fu'st notch yielding

=
 ,lKt

in which up is the particular value of a corresponding to fully plastic behavior

for an ideal elastic, perfectly plastic material having the same yield strength,

q_, as the real (strain hardening) material. Also

and the point (a*, e*) lies on the cyclic a - e curve, i.e.,

"":=T+

4. Topper's version of Neuber's rule [10]:

E

in which K! is the fatigue notch factor.

Applications of Neuher's rule and its versions require the solution which

satisfies both rule (or version) and cyclic a - e curve

where

K' = cyclic strength coefficient.

n' = cyclic strain hardening exponent.

With given _,, the state of a - e can be solved numerically; hence, one may

estimate cycles to failure using Eq(2).

• Mean Stress Effects:
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I. Morrow's equation [12]:

_. = _,:,- _,o(2_)' + <,(2m_
E

2. Manson and Halford's equation [13]:

e. o'_, -Ek..,O'o (2N) b + e_ (o'_, - k_,o)elb(2N) c= 0.,I

The inversion formula of this equation is

where

_ ,, .. Ae .,/c ( Ae/,/i,1_/.

lv_= 0.5[(_T)-'
EAeT

(8)

(9)

(10)

(ii)

k,_ is mean stress factor; and NT, ACT, z, P and Q are defined in Eqs. (3)

through (7).

* Mean Stress Relaxation:

Mean stress effects are seen predominantly at longer lives. At high

strain amplitudes (0.5% to 1% or above) where plastic strains are

significant, mean stress relaxation occurs and the mean stress tends

toward zero. Mean stress relaxation can occur in materials that are

cycllcaliy stable.
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L-3 Low Cycle Fatigue Under Random Stresses

. Basic Assumptions:

I. Linear damage accumulation rule applies. (no sequence e_ects)

2. Stress information is obtained by

(i) actual record.

([i) simu/ation based on the power spectral density function of stress..

3. Material's cyclic cr -e is given. The fatigue strength,_, e_, b, and c are given.

• Procedure:

1. Obtain the strain history by computer analysis, which automates local strain

analysis. (e.g. Program BROSE at the University of Arizona.) Example is

shown in Fig. I. Note the development of hysteresis loops in Fig. 2.

Fig. 1. Examp|e of strsin h/story. Fig. 2. The hysteresis loops.

2. Using the rainflow cycle counting method, one may determine cycles and

the associated mean stresses,or0,and strainranges, Ae from the hysteresis

loops (Fig. 2). In thisexample, cyclesare identifiedas A-D, B-C, E-F, and
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G-H with the strain ranges, Ael, Ae_, Ae3 and Ae4, respectively. The mean

stress are o0t, o02, o0s, and o04, respectively.

3. For each cycle, i, fatigue life, Ni, can be determined by a strain-life equation

that incorporates mean stress effects, such as

i) Morrow's equation [1]:

,'xe_._._i= o_r- o0_(2Ni)b + e_(2.N. )_ (1)
2 E

ii) Manson and Halford's equation [2]:

-- 0a -- kmooi

A"'22 - o_ Ek"°°' (2Ni)b + e_( f o'_ )_/b(2Ni)_ (2)

where

At[ i :

E:

O'o_ :

b:

e):

c:

km :

N_:

strain range of the ith cycle.

Yotmg's modulus.

fatigue strength coefficient.

mean stress of the ith cycle.

fatigue strength exponent.

fatigue ductility coefficient.

fatigue ductility exponent.

mean stress factor.

cycles to failure coresponding to the ith load cycle.

4. Total Miner's fatigue damage, D, then is

k
1

(3)
i----I

where k is the number of cycles determined from the hysteresis loop.

• Reliability Considerations:

1. The failure event is [D >__A] where A is damage at failure. A can be modeled

as a random variable.

2. The probability of failure is

P,.[D >_ A]

139



Since the fatigue properties _, e_,.., are random variables, a program to

compute D is required. The reliability calculation can be made using AMVFO.

• References :

[1] Morrow, J., Fatigue Design Handbook, Advances in Engineering, Vol. ,
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Fatigue Damage," Int. J. Fract., Vol. 17, No. 2, 1981, pp.169-172, R35-R42.

[3] Dowling, N. E., DeformAtion. Fracture. and Fatit, ue of Ent, ineerinf Materials_

under review for publication as text; VPI, Blacksburg, VA 24060.
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Warrendale, Pa., 1988.
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F-1 Fatigue Crack Propagation

(Constant Amplitude Stresses)

• Assumptions :

I. No threshold on stress intensity level.

2. Constant amplitude stress. (let S - Stress range)

3. No creep. (high temperature effects)

4. The Paris crack _owth law appUes.

• Fatigue Crack Growth Law (FCGL)

da

d-'N = C(AK)=

=
(1)

Parameters :

1. Material empirical constants, C & m.

2. Geometric Correction Factor, Y(a).

3. Applied stress range, S.

4. Initial crack length, a0.

5. Failure crack length, al, chosen

(a) by engineering judgement.

(b) critical crack length, i.e., a! = K_/(_rY2.., ¢_) where Kc is fracture

toughness.

• Case A : Cycles to failure

1 f-t da

N! = C(S_/%)= ]o0 [YCa)v@ =

• Case B : Cycles to failure (assume geometry factor is constant)

(2)

- a'o-+)
N! = (2 - m)C(YSv_ = (3)

• Case C :Cycles to failure(assume constant geometry factorand a0 << al)

2 (4)
N/= ao_l(m_ 2)C(YSv/_) m
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• Reliability Considerations :

1. The event of failure is [N < No], where No is the design life.

2. The probability of failure is

Pl ffiP,[_v < Iv0]

where N = N(a0, a I, C,m, Y, S), all of which can be raadom variables. Ob-

tain solution using Wu/FPI or AMVFO.

• Consideration of Mean Stress Effect

Define stress ratio R

R = Km_._._
gmaz

S_in

Sfc_a_

R is constant since constant amplitude stress.

(5)

1. Forman's equation [1] :

a. Cycles to failure

da CAK m

dg (1 - R)Ke - A K

,,t (1 - R)Kc - AKN = C(AK)" d,_
0

b. Cycles to failure (assume constant geometry factor)

8--m 3oWt

N __
(1 - R)Kc(aoI-'_ - a_-_)

(_ - t)c(rsv_)-
aO-'$'-- _ (2 _

_f ,,

(W-_)c(Ysv_).,-,

(6)

(T)

(8)

2. Walker's equation [2] :

d...._a= C[(1 - R)kg,...] ''
dN

k is an empirical constant (9)
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a. Cyclesto failure

1 j_aat daN_ = C[S...(1 - R)*V_" o [Y(a)V_]"

b. Cycles to failure (a_sume constant geometry factor)

1-_ l-_,
% -- a!N=

(_ - 1)C(1 - R)*'(YS.,,V;)"

(10)

(11)

3. equation suggested by RoVe and Barsom [3] :

d__a = C[(1 - R)kAK] m k is an empirical constant (12)
dN

a. Cycles to failure

1_17. _'t da (13)N! = C[S(1- )*v_] " . [Y(a)v_ m

b. Cycles to failure (assume constant geometry factor)

a o --a[

N = (._ _ 1)C(1 - R)*m(YSv_ " (14)

* Comment:

i. Stress ratio data should be available to fit the empirical constant k

. Reliability Considerations :

1. The event of failure is [N < No], where No is the design life.

2. The probabiity of failure is

P/ = P,[N < No]

where N = N ( ao, a f, C, k, m, Y, ,9, R, Kc ), all of which can be random vari-

ables. Obtain solution using Wu/FPI or AMVFO.

• References :

[1] Fuch, H. 0., and Stephens, R. I., Metal Fatieue in Engineering, John Wiley

& Sons, 1978.

[2] Walker, K., "The ERect of Stress Ratio during Crack Propagation and Fa-

tigue for 2024-T3 and 7075-T6 Aluminum," ASTM STP 462, 1970, p. 1.

[3] Rolfe, S. T. and Barsom, 2. M., Fracture and Fatigue Control in Structures,

Prentice-Hall, 1977

[4] Broke, D., t_lementary Engineering Fracture Mechanics, Martinus Nijhoff Pub-

lishers, The Hague, 1984.

[5] Dowling, N. E., Deformation. Fracture. and FatiL, ue of Engineering Material,,

under review for publication as text; VPI, Blacksbury, VA 24060.
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F-2 Fatigue Crack Propagation

(Variable Amplitude Stresses)

• Assumptions :

I. No threshold on stress intensity level.

2. The long term statistical distribution of fatigue stresses is known.

3. The Paris crack growth law applies.

4. Sequence effects are negligible.

5. No mean stress effect associated with individual stress cycles.

• Fatigue Crack Growth Law (FCGL)

da

d'W : C(_)"

= c[r(,)sv_]-

Parameters :

1. Material empirical constants, Paris coemcient and exponent, C & m.

2. Geometry Correction F_ctor, Y(a).

3. The distribution parameters of applied stress range, S.

4. Initial crack length, a0.

(1)

Equation (1) may be integrated in the form as follows [1,2] :

/oN /5s- dN = . C[r(a)v_" (2)

where aN is crack length after N cycles.

Because of the variable amplitude, the stress cycles are discrete, and equation (2)

can be written as,

N _i _ C[Y(a)V_mdasp = (3)

In general, a numerical procedure is required to compute aN.

• Reliability Considerations :
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I. This problem can be thought of as a first passage problem. Failure is mmumed

to occur the first time that crack length exceeds a¢, a critical crack size

ae<aN (4)

o

The critical crack size is chosen

a) by engineering judgement.

b) by ae = K2c/(IrY2S _) where K¢ is the fracture toughness of the ma-

terial.

The probability of failure is

P!- Pr[ac _< aN] (5)

where aN -" aN(a0, C, m, Y, S), all of which can be random variables. Reli-

ablity estimate can be obtained using Wu/FPI or AMVFO.

• In the case where stress is a stationary random process

Rewrite equation (3) as

I_ "N d.z 1_0 C[Y(a)v_ m = p st'= (6)

=E(S =)

where E(-) denotes expected value.

For example, letS be Weibull distributed;itsprobabilitydensity function is

/$(S) -----(_) (_)'-I exp(--_)( O< s,',_ < co

where _ = Weibull shape parameter and 6 = Weibull scaleparameter. It can

be shown that E(S') is,

E(S=) = _'Is(_)d.

=6_r(_+1)
(7)

1

Pr(S> So)=p (8)

Define So by the expression,
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that is, the return period of (S > Se) is N. It follows from the definition of

So that,

sCS-)= S_'(logJv)-?r(_ + 1)

[S00og + 1)]" (9)

= Ca.)"

$,q iscalledthe equivalent stressrange.

Equation (4) isnow in the form of

£-IVST;,t= (10)

Note that this form is identical to the constant amplitude form. This is the fracture

mechanics equivalent of Miner's rule.

• S_ec_nces :

[1] Madsen, H. O., Skjong, It.,and Kirkemo, F., "ProbabilisticFatigue Analysis

of O_shore Structures w ReliabilityUpdating Through Inspection Results,"

A.S. Veritu, Hovik, Norway.

[2] Perng, Horng-Linn, "Damage Accumulation in Random Loads," Ph. D. Dis-

sertation,The University of Arizona, 1989.

[3] Wirsching, P. H., "Considerations of Probability Based Fatigue Design for

Marine Structures,"Marine Structure, 1 (1988) 23-45.

[4] FatiL,ue Handbook, OfFshore Steel Structures , Ed., A. Almar-Wess, Tapir

Publisher, 1985.

[5] Collins,J. A., Failureof Materials in Mechanical Desien,

John WLley & Sons, 1981.

[6] Wirsching, P. H., "Fatigue Reliabilityfor Offshore Structures," Journal of

Structural EnsdnCwrinz, Vol. 110, No. 10, Oct. 1984.
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F-3 Fatigue Crack Propagation

(Variable Amplitude Streu with a

Threshold Streu Intenmity Factor)

• Assumptions :

1. Threshold stress intensity factor AKta exists.

2. The Paris law applies in region II and extends through region III.

3. Sequence effects are negligible.

4. The long term statistical distribution of fatigue stress is known.

5. Mean stress effects are ignored, although they could be introduced through

Paris coefficient, C, and AKth.

• Fatigue Crack Growth Law (FCGL)

da

d-_ = C(AK)"

=
(1)

Parameters :

I. Material empiricalconstants,Pariscoefficient,C, and Paris exponent,

Yt_.

2. Geometry Correction Factor, Y(a).

3. The distribution parameters of applied stress range, S.

4. Initial crack length, a0.

• Consideration of the threshold stress intensity factor [1,2]:

AKth is defined as a stress intensity value below which the crack will not

grow. Thus, a threshold stress range level is

S0(a)= AKth
y(a)v/_ (2)

Crack growth occurs for a stress cycle only if S > S0(a). The truncated

density function of damaging stress cycles then is

f
hs(s, a) =

L 0
for So < s < ¢x_
otherwise. (3)
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where
O0) = Pr[S > so(.)]

/sl _ (4)ffi /s(°)&
(o)

and fs(,) is the probability density function of the applied stress range, ,5".

Consider the Paris fatigue crack growth law using the characteristic stress

approach,
da

= ctYCOS,.COv_ _ (5)

where
Nd = number of damaging cycles only

5"ed = equivalent stress for damaging cycles only.

Because[2]

Then, it follows that,

[&.(_)]= = E(S-)

£= s=hs(s)d,
(o)

1 /.: *"Is(*)d*= -_('_ )

= [&(,,)l'/Q(a)

da 1 da

dN, i Q( a) dN

(6)

(7)

d_

= c[y(.)&(.)v_ = (s)
d"_

Define the threshold factor as,

G(a) = [S°(a)lm
[S.,l- (9)

where Seq is the Miner's equivalent stress range derived in section F-2.

It follows from equation (9) of section F-2

1 f oN da (10)NS_ = -_ o G(a)[Y(a)qf_-h'] "n
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In genera], a numerical procedure is required to compute aN, crack size after

life N. A computer program has been developed at the University of Arizona

to compute N as a function of aN and aN as a function of N.

• Reliability Considerations :

1. This problem can be thought of as a first passage problem. Failure is assumed

to occur the first time that crack length exceeds ac, a critical crack size

Failure -- [ac __ aN]

The critical crack size is chosen

(a) by engineering judgement.

(b) by ae - K2c/(Try2S2), where Kc is the fracture toughness of the ma-

terial.

2. The probability of failure is

P! ffiPr[ac _<aN] (11)

where aN -" aN(ao, C, rn, Y, S), all of which can be random variables. Reli-

ablity estimate can be obtained using Wu/FPI or AMVFO.

• References :

[1] Wirsching, P. H., "Considerations of Probability Based Fatigue Design for

Marine Structures," Marine Structure, 1 (1988) 23-45.

[2] Wirsching, P. H., "Fatigue Reliability for Offshore Structures," Journal of

Structural En_ineerir_5 , Vol. 110, No. 10, Oct. 1984.

[3] Fatit, ue Handbook, Offshore Steel Structures , Ed., A. Almar-Wess, Tapir

Publisher, 1985.

[4] Perng, Horng-Linn, "Damage Accumulation in Random Loads," Ph. D. Dis-

sertation, The University of Arizona, 1989.

[5] Madsen, H. O., Skjong, R., and Kirkemo, F., "Probabillstic Fatigue Analysis

of Offshore Structures -- Reliability Updating Through Inspection Results,"

A.S. Veritas, Hovik, Norway.

[6] Collins, J. A., Failure of Materials in Mechanical Design, Wiley, 1981.
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F-4 Other Models to Describe

Fatigue Crack Propagation

• Paris law is a popular model and is presented in sections F-l, F2, and F3.

Other empirical models that have been proposed to describe fatigue crack

propagation are listed as follows.

d_ =C,X-gc, (1)
dN

da v (AK -- AK,) p2

= (2)

1 A_ 1

daldN - (AK)", + A2[(A_,')n' C'] (3)

d.__.a_ C(Km.r)m[(Km.z + Ke)(1 - R.]I) + "K] _
dN

da

loglo (_) -- P1 exp(P2 log AK)+ P3 exp(P4 log _K)+ Ps

log,o (_) = C, sinh[C2(log AK + C3)] + C4

(4)

(5)

(6)

da

__dN= e + (v_ e)[_In(l _ Ak._.b)]I/k (7)

d_

= exp[_0 + _,(log AK) + _2(log AK) 2 + &(log AK) 3] (8)

• Comments on these models is provided in the following :

1. Equation (1) is a modified Paris Law in which

A--K = AK_I[ - AK
1 -(AK_.,/K¢) 2

(9)
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.

.

and

K_f! = (1 - Po/Pm,.)K,.,z (10)

The ratio PO/Pma, is calculated from a crack closure model under plane-

strain conditions.

In equation (2), AKt and z_Kc are constants defining the asymptotes at low

and high z_K, respectively. PI shifts the (log-log) curve up or down, and P2

and P3 influence curvature.

Equation (3) is another form of the three-component model first proposed

by Hudak, et al., [1] for a constant-load ratio

1 A1 A2 A2

da/dN = (AK)", + (AK)", [K,(1- R)]", (11)

where AI,A2,nt,n2, and Kc are fitting constants, and R is the stress ratio.

4. Equation (5) is similar to equation (6), except that different curvatures in the

upper and lower regions are allowed through the choice of the pairs P1, P2 and

P3, P4. The coeflicient shifts the entire curve up or down. These coefticients

are determined through curve fitting to the fatigue crack growth rate data.

5. Equation (7) was the four-parameter WeibuU equation, which is actually

a three-parameter WeibuU cumulative distribution function with a fourth

parameter added to normalize the stress-intensity variable. The details are

referred to [3].

6. Equation (8) is suggested by Kung [5] to describe the crack growth behavior.

If let Y = log(da/dN), X = log AK, then the equation is a cubic polynomial

equation. The advantage of this model is the exclusion of nonlinear terms

proposed in the other models.

1.

Reliability Consideration

In general, a special numerical procedure is required to compute either crack

length aN after a specified life, say service life, Nm, or the life N when a

critical crack length, ac is reached. The critical crack length ac is normally

chosen

a) by engineering decision

b) by ac = K2c/(_ry2S 2) In the former case, failure occurs when aN

exceedes a,, while in the latter case, N < Ns.
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.% 2. Thus, the probability of failure is

P! --Pr[ac _<aN] (12)

or

P! - Pr[N <_N,] (13)

allof which can be random variables.Reliabilityanalysiscan be done using

Wu/FPI or AMVFO.

• Refel"t_ces :

[1] Hudak, S. J., Jr., Saxena, A., Bucci, R. J. and Malcom, R. C., "Development

of Standard Methods of Testing and AnMyzing Fatigue Crack Growth Rate

Data," Technical Report AFML-TR-78-40, Air Force Material Laboratory,

Ohio, May, 1978.

[2] Saxena, A. and S. J.Hudak, Jr.,"Evaluation of the Three-Component Model

for Representing Wide-Range Fatigue Crack Growth Rate Data," Journal of

Testing and Evaluation, 3TEVA, Vol. 8, No. 3, May 1980, pp. 113-118.

[3] Miller,M. S. and Gallagher, J. P., "An Analysis of Several Fatigue Crack

Growth Rate (FCGR) Descriptions," Fatigue Craclc Gro_at_ Measurement

and D_ta Anal_/sis,ASTM STP 738, S. J. Hudak, Jr. and R. J. Bucci, Ecls.,

American Society for Testing and Materials, 1981, pp. 205-251.

[4] Yang, J. N., Salivar,G. C. and Annis, C. G., Jr.,"StatisticalModeling of

Fatigue-Crack Growth In A Nickel-Base Superalloy," Engineering Fracture

Mechanics, Vol. 18, No. 2, pp. 257-270, 1983.

[5] Kung, C. J., "Objective Comparisons of Various Fatigue Crack Growth Laws

Based On Time Series Analysis Criteria," Master Report, The University of

Arizona, 1988.
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F-6 Crack Growth Model for

Variable Amplitude Stresses

(Sequence Effects are Significant)

• Crack-tip plasticity models :

Assumptions :

1. Load interaction effects (crack growth retardation) occur due to the large

plastic zone developed during the overload.

2. Load interaction effects remain active as long as the crack-tip plastic zone

developed on the following cycles remains within the plastic zone of the

overload.

a. Wheeler model[l] :

an = a0 +
iffiffil

Parameters

an = crack length after n cycles of load application.

a0 = initial crack length.

f(AK) = the fatigue crack growth law, e.g., Paris law.

Cp = an empirical retardation parameter.

How is Cp defined ?

r_, i] P if ai + ry, < aOL + rot.(C,)i "- ['(aOL +rOL)--a

(Cp)i = I ifai + ry, >_aOL + rOL

where

r_ = the plastic zone size due to the ith loading cycle.

1 Kmaz_ )2

= 2 for plane stress case

= 6 for plane straincase
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aot, = the crack length at a high tensile load application.

rOL = the plastic zone size caused by the high load.

1 (KoL)2=
for plane stress case

for plane strain case

ai -- cra_ length at ith loading cycle.

p -- an empirical shaping exponent to be determined experimentally.

• Comments:

I. A major disadvantage of this model is the empirical shaping exponent,

p.

2. This model neglects the counteracting effect of a negative peak load

in crack retardation.

b. Willenbor_ model[2] :

The procedure of this model is outlined below

1. Determine ap:

ap _ ao _ roL

1 KoL)2= ,,o+
2. Determine the required stress, (areq)i:

1 (Ks:_h 2]
1 fYCa)(a,.,_q), _v/'_"_,]_

Y(a) V ai

3. Detremine the compressive self-stress, (at.rap)i:

(_c0_,h = ('r._h - ('m..)i

where (a.,.z)i is the maximum stress occurring at the ith cycle.
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4. Determine an "effective" stress range, Ao_:

(o_..), = (o....),- (_0o.,),

= 2(o.°.), - (o.e,),

('n), ffi('n),- ('_o-,),

= (o...), + (_-,.), -(_,,)_
If either of these "eifective _ stresses is less than zero, it is set equ,d

to zero.

• . e_of= (,,,,,..), - (,.,...),

5. Determine (_Ke ; l ), [and (R_ f l )_ if necessary]:

(_K.t;), = Y(a)Ao?

(K,,,,,,),'.1j'
(R_tj,),= (K.,,,),..tI

6. Determine the crack length after n cycles of loading, an:

i----I

where f(.) denotes the fatigue crack growth law, e.g., Paris law.

• Comments :

1. a e is the sum of the initial crack length (the crack length when the

overload was applied) and the plastic zone due to the overload. Crack

growth retardation will decrease until the sum of current crack length,

ai, and its associated plastic zone, rr, , is equal to or large than ae. In

other words, when the boundary of the current plastic zone touches

the boundary of the overload plastic zone, retardation ceases.

2. The required stress, (Oreq)i is the stress required to produce a yield

zone, (tree)i, whose boundary just touches the overload plastic zone

boundary.

3. The most significant difference between the Wheeler and Willenborg

models is that the Willenborg model uses only constant-amplitude

crack growth data and does not require a "shaping" exponent.
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• Crack Closure Model[3] :

Assume crack extension occurs only when the applied stress is greater than

the crack opening stress, Sop.

where

da

d'_ = .t'(aK.H)

f(-) = fatigue crack gowth law, e.g., Paris law

AK, H = K,,o= - Ko_

= (s..= - s.,),/_Y(a)

= s...(_- cF)47"SY(a)

CF = Correction Factor

=
Sins,

The procedure of this model is as follows:

1. Determine (ASeL/')I and consequently AK_s!

(AS.SS),= (S..o.),- (So,),

2. Calculate _a_

3. Determine a_+l:

= l(aK,ss)_

ai+ l = ai + Aai

Repeat these steps until final crack length, say, an, exceeds some critical

crack length, say, ay.

• Comments:

1. Large computer programs with long run times are often required.

2. Good correlations have been obtained between predicted and experi-

mental results.

3. When Paris law is applied, the coefl]cient C must correspond to the

same closure level as the effective stress intensity factor term, AKel].

That is,
da

(_W) = C(AK, ss)"
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O

C-'--
U"

where C ° = crack growth coefficient obtained from constant ampli-

tude stress range test.

U=  K.n
AK

ZkK, I! = Km.z -- Kop

A K -- K_*** - K,,i,

The crack growth exponent,m, does not need to be modified to ac-

count for crack closure effects.

• Reliability Consideration :

1. The event of failure is [a, > al] , where a! is specified failure crack length

which might be a random variable.

2. The probability of failure is

Pl = P [a. > aA

Reliability estimate can be obtained using Wu/FPI or AMVFO.

• Computer Programs for Computing Life using Cycle-By-Cycle Counting :

1. NASA/FLAGRO, NASA Johnson

2. ASDGRO, Aeronatical Systems Division, WPAFB, OH

3. The Fracture Mechanic, American Society of Metals, 1986

4. Fast-2, Newman, J. C., NASA Langley.

5. CRACKS II. [5]

6. EFFGRO [6]

• R, eferences :

[1] W_neeler, O. E., "Spectrum Loading and Crack Growth," .J. Basic Eng.,

Trans. ASME, Vol. D94, No. 1, 1972, pp. 181-186.

[2] WiUenborg, J., Engle, R. M., and Wood, H. A., "A Crack Growth Retar-

dation Model Using An Effective Stress Concept," AFFDL TM-71-1-FBR,

Jan. 1971.

[3] Elber, W., "The Significance of Fatigue Crack Closure," Damage Tolerance

in Aircraft Structures, ASTM STP 486, 1971, p230.
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[4] Fuch, H. O., and Stephens,11.I., Metal Fatizue in En_ne_n_, John Wiley

& Sons, 1978.

[5] Engle, R. M., "CRACKS II User Manual," AFFDL TM-173-FBE, Aug.

1974.

[6] Chang, J. B., "Improved Methods for Predicting Spectrum Loading Ef-

fects," Rockwell International, Los Angeles Division, First Quarterly Report,

NA078-491, May 1978.
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H-1 High Temperature Low Cycle Fatigue
(Synergistic Effects of Creep and Fatigue)

Linear and Elliptic Prediction Rules;
Constant Amplitude Stress

• Assumptions:
I. Creep behavior is controlled by the creep stress, _m.

2. Fatigue behavior is controlled by the stress amplitude, a..

3. Isothermal conditions.

• Life Prediction Rules (Fig. 1):

Notation:

u.: stress amplitude

u2v: fatigue strength at N cycles

_rn: creep stress

_ce: creep-limited static stress

Fig. 1.

4

w

ON

°.

04q,

Failure prediction diagram for combined creep

and fatigue under constant temperature conditions.

1. Linear prediction rule:
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Fa_u_ _ p_ic_ _o occur under comb_n_ _o_er_a[ creep 4rid fa_e if

D - a--i-"+ o..._m>_ 1 (1)
ON Oer

2. Ellipticprediction rule :

Failure ispredictedto occur under combined isothermal creep and fatigue if

ON-

• Comments:

1. This approach is similar to the Goodman linear model and the elliptic model,

which accounts for the mean stress depicted in Section C-1.

2. The creep-lindted static stress corresponds either to the design limit on creep

strain at the design l_e or to creep rupture at the design Life, depending on

which mode governs.

3. "_e linear rule is usually (but not always) conservative. In the higher tem-

perature portion of the creep range, the elliptic relation usually gives better

agreement with data.

• Reliability Considerations:

1. The event of failure is [D _> 1], where D is deilned as above.

2. The probability of failure is

P! = Pr[D _> 1]

AU of which can be random variables. Reliability analysis can be made using

Wu/FPI or AMVFO.

• l_e_e_ces :

[1]CoIl_, J.A..Failur_QfMaterial@ irlMechanical DesiEm, John Wiley _ Sons,

1981.
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H-2 High Temperature Low Cycle Fatigue

(Synergistic Effects of Creep and Fatigue)

Frequency Modified Strain; Constant Amplitude Stress

• Total-Strain-Range-versus-Life Relation [I]:

The plastic strain-life relationship is

_e? -- e_NCv -(1-'_)c

The elastic strain-life relationship is

KI . _s

=
"_f " I n I Cn e

= T( s)

and the total strain-life relationship is

Act = Ace + A_p

where

V'V-(1-1c)cn'

_-- T_cf!I_tf.e 'In" ATcn'a, v"_'--(l --g)cn' + e_.NCv-(1-g)c

_ee : Elastic strain range

_e? : Plastic strain range

Act : Total strain range

K' : Cyclic stress-strain coefBcient

E : Young's modulus of the material

e_ : Fatigue ductility coefEcient

n _ : Cyclic strain-hardening exponent

N : AppLied service life

c : fatigue ductility exponent

v : AppLied frequency

_, 7 : Material's constants

(1)

(2)

(3)
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The qumltities t_ and 7 measure the effect of frequency on fatigue life. Coef-

ficients and exponents in equations (1), (2) and (3) can be determined from

the results of several laboratory tests at specific strain ranges and frequen-

des, by means of regression analysis. The coefficient K e and exponent n _

can be determined from cyclic stress-strain experiments at unit frequency

while .y is obtained in shnfl_ experiments by varying the frequency while

maintaining the plastic strain-r_uge constant.

Fi-om equation (2), one may obtain

and rewrite it as

at, = (4)

= agPu s (5)
2

By setting t/- 1, equation (5) is a similar to the Basquin equation. The a

and _ can be determined using the stress-llfe method, while 6 is determined

in the same way as the determination of _ as described previously. With the

a, _ and 6 obtained and K', n I and 7 solved previously, one may have e_, c
and s solved.

From equation (3), one may calculate the total strain range Art with a

given applied stress cycle. However, a numerical computation is required to

compute the llfe N with a given total strain range Act.

• Reliability Considerations:

The event of failure is

1. [At > Art], where At is the applied strain range after N cycles.

2. [.N < No], where No is the design fife.

The probability of failure is

I. P! -- Pr[At > Art]

2. P! - Pr[N </70]

All the parameters, i.e., coe_cients, exponents, and material constants asso-

ciated with life prediction may he random variables. Life prediction can be

made using Wu/FPI or AMVFO.

• Pt_ferexlces :

[1] CoiKu, L. F., 2r.,"The Effect of l_equency on the Cyclic Strain and Low

Cycle Fatigue Behavior of Cast Udimet 500 at Elevated Temperature," Met-

allurgictd Transactions, 12(November, 1971):3105-3113.

[2] Collins, J. A., Failure of Materials in Mechanical Design, John Wiley & Sons,

1981.
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H-3 High Temperature Low Cycle Fatigue

(Synergistic Effects of Creep and Fatigue)

Strain Range Partitioning; Constant Amplitude Stress

• Nomenclature

B Intercept of elastic-strain-rauge-versus-life relations

b Exponent on cyclic life for elastic-strain-range-versus-life relations

C Intercept of inelastic-strain-rauge-versus-life relations

C t Intercept of equivalent inelastic line for combined creep-fati_me cycles

c Exponent on cyclic life for inelastic-strain-range-versus-life relations

F Strain fraction

K Cyclic strain-hardening coemcient

N Applied cycles on zero mean process

n Cyclic strain-hardening exponent

A Range of variable

strain

¢ stress

_ub_cr/p_

c Compression

cc Creep strain in tension, creep strain in compression

cp Creep strain in tension, plastic strain in compression

el Elastic

ij pp, cp, pc, cc

in inelastic

pc plastic strain in tension, creep in compression

pp plastic strain in tension, plastic strain in compression

• Assumptions [1]:

1. Cyclic life is a function of the inelastic strain range and the type and relative

amounts of time-independent strain (plasticity) and time-dependent strain

(creep) present in a cyclic stress-strain hysteresis loop.

2. The inelastic and elastic failure lines for isothermal creep-fatigue cycles are

parallel to the corresponding failure lines for pure fatigue (pp cycles).
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3. The stress process has a zero mean. The _ computed life should be

adjusted to account for any mean stress effects.

• The Total-Strain-Range Version of Strain Range Partitioning (TS-SRP) Ap-

proar.h.

1. The four generic Strain Range Partitioning (SRP) life relations are

a_,. = c_i(_i)° (I)

ij -- pp, cp, pc, cc and c is a constant due to the assumption 2.

2. The interaction damage rule (IDR) is written as follows :

_-_, F__., 1
[_:;) = _ (2)

where Fij is the strain fraction of the type of cycle and is defined as follows

[2]:
F. = (a_,.)./_i.

F_c = (Ae,.)=dAe_. (3)

with

3. Total-strain-range-versus-lEe relation

a,,= B(N)_+ C'(N)° (4)

where Ae# is the totalstrain-range. Parameters in thisequation relatethe

failure behavior and flow behavior in the following manner:

Failure behavior

Ae, l= B(N) b (5)

a,,. = C'(N) _ (6)

c' = [_ F,_(C,i)'/°]°

where

(7)
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Flow behavior

h_.t = K_(A_) _ (S)

Prom equations (5), (6), and (8), a desired equation relating flow and failure

characteristics is obtained,

B = x_(c')" (9)

• Life Prediction

There are three variants suggested by Saltsman and Halford [1,3] for life

prediction by using the total-strain-rauge version of strain range partitioning (TS-

SRP) approach. These variants are summarized as follows.

Y.maa_

(I) Determine the SRP inelastic-strain-range-versus-llfe relations

and the pure fatigue (pp) elastic-strain-range-versus-life rela-

tion from failure tests.

(2) Calculate the cyclic strain-hardening coefficient (Kii) and the

strain fractions (Fii) by using an appropriate constitutive flow

model, e.g., Walker model [4], for which the material constants

are known.

(3) The elastic line intercept B can now be calculated by using

equation (9) and the proceeding information.

(4) Determine the total-strain-range-versus-life curve for the case

in question. Enter the curve at the appropriate total strain

range then determine cyclic life for the zero-mean-stress con-

dition. The inversion method of Manson and Muralidharan[5]

which is described in section L-2 can also be used to compute

the cyclic life N with a given total-strain-range.

(I) Same as step of variant I.

(2) Determine the elastic Line intercept B by using the empirical

equation of Ha]ford and Saltsman [6]. The constants in this

equation are determined from failure data. Failure tests should
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--_.. be performed at the lower strain ranges to reduce extrapolation

eXTOlS.

(3) Measure strain range (elastic and inelastic) and stresses from

failure tests and extrapolate to lower strain ranges using em-

pirical equations.

(4) Determine cyclic life using step 4 of variant 1.

(I) Same as step 1 of variant I

(2) Conduct flow tests for creep-fatigue cycles of interest and oh-

tabu from these data necessary empirical correlations describing

the flow behavior.

(3) Calculate the elastic line intercept B by using equation (9).

The strain-hardening coeflldent Kq and the strain fractions

_'_j are determined from the correlatio._s obtained from step 2.

(4) Determine the cyclic life using step 4 of variant 1.

• Mean Stress Consideration [7]:

I. A method for accounting for mean stress effects on life for isotherms/con-

ditions has been proposed [8]. The predicted cyclic life accounting for mean

stress effects is

(N,,,)b -- (N)b -- V,t! (10)

where Veil is the effective mean stress correction term.

tigue, Ve!! is determined by the following equation:

_Tm 2
v.!!=- ]

O'a

For isothermal fa-

.

(11)

where _rm isthe mean stressand or.is the stressamplitude. Note that this

method was developed for a specificnickel-basealloyand may not apply to

other alloysor even to other nickel-basealloys.

For thermomechanical fatigue (TMF), an alternate definition of Ve/! is in

order since a mean stress can naturally develop because of the temperature

dependency of the yield strength in tension and compression. Hence, Ve!!

in equation (10) should be determined [9] by the following:

1+ (Rc,IRy) (12)
re1! = 1- (R,,/R,,)
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where P_ is equal to _i_/_,nu and R_ is the absolute value of the ra-

tio of the compressive yield strength to the tensile yield strength at their

respective maximum and minimum temperature and strain_tes in TMF cy-

cle. However, there is no direct experimental verification of this method for

accounting for mean stress effects for nonisothermal fatigue.

• Reliability Considerations:

Because uncertainties exists in the design factor associated with life predic-

tion [10], reliability analysis is a must in life prediction.

The event of failure is

1. [Ae > Aed, where Ae is the appLied strain range after N cycles.

2. [N < No], where N0 is the design llfe.

The probability of failure is

1. P! = Pr[Ae > Act]

2. P! - Pr[N < No]

All the parameters associated with life prediction may be random variables.

Life prediction can be made using Wu/FPI or AMVFO.
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FRACTURE MECHANICS (Priliminary)

At Rocketdyne most fracture mechanics analyses employ Linear Elastic Fracture Mechanics

(LEFM) principles; and most crack problems are of mode I. The stress intensity factor (/_'1)

solutions published in the lite_ture and the handbooks (Ref. 1-4) are used. A plastic zone

correction is typically included in the stress intensity factor calculations. The most common

crack configuration is the semi-elliptical surface crack; in such a ease, Newman and R_ju's (EeL

5) solution is used to calculate the Kt values. Furthermore, the crack propagation is two di-

mensional, it grows both in the depth (a) and in the length (c) directions with its shape varying

but remaining elliptical.

Calculation of the crack growth is performed by integrating the fatigue eraz.k growth _te

(FCGR) equation, which take the following form

da

= fC=, /cr) (z)

and the fatigue cra_k growth (FCG) life of the member (N/) is

f aj da= , I(=,zxK ) (2)

where al and a! are the initial and final crack depths, respectively.

Two FCGP,. equations are being used at R.ocketdyne to represent the fatigue crack growth

rate. These axe the Walker equation (Ref. 6) and the modified Forman equation (Refs. 7,8).

With further simplification the Walker equation can be integrated to obtain an explicit algebraic

expression for the fatigue crack growth life N/. The modified Forma_x equation is employed in
the NASA-FLAGRO (Ref. 8) computer code, which is an incremental flaw growth code com-

monly used at Rocketdyne.

In the integration of the FCGR equations, the initial crack depth ai and the final crack

depth a! of the integration are dependent upon the requirements of the analysis. The initial
craz.k depth ai ca_a be the NDI capability, an observed crack size, or the crack size defined by

proof test screening. The final crack depth a! can be obtained from the conditions of toughness

failure when KI = Kv, where Kc is the material toughness; leakage when a = t, where t is the
thickness of the member; or the threshold condition when AKt = ,'XK=h or Kt = K#,, where

AKth isthe FCGR thresholdand l(th(KIsc¢) isthe sustainedload crack growth thresholdof

the material.

A simpleapproximation to the shortcrack effectusingEl Haddad's (P,.ef.9) intrinsicflawsize

paraanetercan be simply incorporatedand isoftenemployed as needed.

NASA-FLAGRO isused regularlyin the FCG calculationsat Rocketdyne. However, this

program isbig and containsmultiplecalculationsin additionto the FCG calculation.Itisnot

feasibleto adopt such a program in the currentPSAM system. A new subprogram should be

written for the purpose of simulating incremental fla.w growth that is compatible to the PSAM

system, for the FCG calculations.
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The Walker Equation

m

The Walker equation (Ref. 6) assumes that the cyclic FCGR, (da/dN) equation can be expressed

in a power law form

d"=c[ l"d"-N" (1 - R,)x-'' J : (3)

where AKI is the stress intensity factor range; 11 is the R-raZio defined as the ratio of the maxi-

mum and minimum stress inten_ty factors, K,.in/K.su; and C, m and n axe material constants.

Note that when the R-ratio has the value zero, Eq.(3) reduces to the common Paris Equation

a.s follows
-- = c [AK.,]"
dN

The stress intensity factor KI has a general form as given below

K_ = ,_o._ (4)

Let us assume that the flaw shape does not change as the flaw advances and that the shape

to front and back face correction (A) remains the stone as the flaw grows. Based on the above

equations, the FCGP_ integration can be expressed in an explicit algebraic expression.

First, based on the definition of the 11-ratio (R), the expression of AKI becomes

Z_K_= K_., (i- R), (s)

and Eq.(3) can be written as

"' =c r,,,-..(,.-,',)]"
J = CK_,=(1 - R)"" (6)

Second, let C" = C (1 - R) 'nn, and utilize Eq.(4), the FCGR equation becomes

d--t= c" (,xo.,.,,.,...v"_"
dN

Rea.rrastging this equation, one obtains

da

a,,l---_ = C" (,_ _,,,,.,)" dN

(':)

(s)

Third, integrating the above equation from an initial flaw size a_ to a final flaw size a/:

" da _Iv!, _ = c" (;_,.,_)" _v (9)
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The above integration can be obtained explicitly for two cases, when n _ 2 and n = 2:

(1) When n _ 2, the number of cycles N! in terms of the crack sizes is

2

_ (,,_ ?) c-.,v!

or in terms of the stress intensity factors,

- "'=_i s (n - 2)(_ o'_) :zC"

(2) When n - 2, Eq.(9) becomes

,t da JoNt C" (Ao,_,=)2dN
i 4

Then the solution N! can be obtained as

(10)

(it)

(i2)

N! = C" (Ao_,) 2

The Modified Forman Equation

Forman's modification of the Paris equation accounts for instability when the maximum stress

intensity approaches the toughness value Kc and crack arrest when the range of of stress intensity

is below AKth. It is written in the form

da C (1 - R)" AK? [AK, - AK,h]"
d-'N' = [(1- R)K¢ - &KI]' (14)

where C, m, n, p, and q are material constants, and AKth is the FCGR threshold.

Usage of this relationship will require the implementation of a numerical integration scheme

for life prediction. Additional complexity could be included by anticipating the flaw shape

changes pattern as the crack advances under certain crack geometries and applied loadings.

Spectrum Loading Considerations
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For the case of a spectrum loading, a Miner's type linear damage rule is assumed during the

FCG calculat/ons. Two ways of handling the spectrum loading are used at Rocketdyne. First,

the stress ranges are collectively rearranged into a number of load steps using a histogram; and

then the different steps of loads are specified as input loads to a code such as NASA-FLAGR.O

to calculate the FCG.

Second, an equivalent stress range technique is used in conjunction with the Walker equation

to convert the spectrum into an equivalent single stress range using the material da/dN - AK!

data. In this approach, a nominal stress range is assumed as the reference load, and each of

the other stress ranges of the spectrum is converted to an equivalent number of cycles of the

reference stress range that would have the same FCGR as if not being conve_-ted. The sum of all

the equivalent reference stress range cycles provides the number of cycles of the reference stress

range that is equivalent to the loading spectrum.

In applying the equivalent stress range technique, the load spectrum need to be screened

constantly to identify the stress ranges that the AK! values fall below the threshold range.

The number of such load steps are changing as the crack grows, because the KI amplitudes are

changing as the crack size changes. Cycles that the A/t'! values fall below the threshold range
do not contribute to crack growth. However, assuming the flaw shape (a/c) and geometry factor

(A) are invariant with the crack size, the threshold fiaw size acs can be predetermined for each

step in the spectrum. This simply and conveniently identifies the crack growth intervals where

distinct equivalent numbers of cycles of the reference stress range must be determined.

Th_ Random Variable Candi_lates

In the FCG calculations, the initial crack size a_, the Toughness Kc, the threshold _I_'th or

R'th are random variables. The initial crack size distribution can present a pre-existing flaw

population suitably modified by NDE or proof test screening. The crack shape or aspect ratio

a/c where c is the half crack length is also a random variable to define the randomness of the two

dimensional surface crack shape. Furthermore, the material constants introduced in the FCGR

equations, such as C, n, and m in the Walker equation, and C', n, m, p, and q in the modified

Forman's equation, are potential random _riables. It is expected that n in the Walker equation

and n, p, and q in the modified Forman equation would be deterministic variables.

_eferences

I. The StressAnalysisof Cracks Handbook, H. Tada, P. Paris,G. Irwin,Del Research Cor-

poration,1985.

2. StressIntensityF_tors Handbook, Vol.I & II,Edited by Y. Mura_trni, Committee of

FractureMechanics, The Societyof MaterialsScience,Japan, Pergamon Press,1987.

174



3. Handbook of Stress-Intensity Factors, G. C. Sih, Institute of Fracture and Solid Mechan-

ics, Lehigh University, Bethlehem, Pennsylvania, 1973.

4. Compendium of Stress Intensity Factors, D. P. Rooke, D. J. Caxtwright, London Her Majesty's
Stazionaxy Office, 1974.

a Stress-inensity Factor Equations for Cracks in Three-dimensional Finite Bodies Subjected to
Tension and Bendin_ Loads, J. C. Newman, Jr. and I. S. 1Lzju, NASA TM #85793, April
1984.

. The Effect of Stress Ratio Dur/n_; Crack Propagation and Fati_ue for 2024-T3 and 7075-T6

Aluminium Effect of Environments and Complex Load History on Fati_,ue Life, ASTM-STP
462, 1970.

. Numerical Analysisof Crax.k Propagationon Cycl/c-Loaded Structures,Ih G. Forman, V.

E. Kearney, and R. M. Engle,Journal of Basic Engineering,Transactionsof ASME, VoL

89, Sept. 1967.

8. Fatigue Crack Growth Computer Program -NASA/FLAGRO, User'sManual, NASA Lyn-

don B. Johnson Space Center,Aug. 1986,Revised Max. 1989.

9. Fati_,ueCrack Propa_,_tionof Short Cracks,El Iimidazl,K. N. Smith, and T. H. Topper,

ASME Journal of EngineeringMaterialsand Technology,Vol 101,1979.

175





Fatigue and Creep
Resistance Models

Bob Primas

Phone: x6354 (Canoga)

June 8, 1990

..,.,._,(. _;T F_LUF.'D

177

__a _._





1 Introduction

This write-up gives a short summary of the fatigueand creep resistancemodels used at

Rocketdyne. Several approaches with vaxyi.'ngdegree of sophisticationare in use. All

the presented approaches have theirdrawbacks. Itisnot the purpose of thiswrite-up to

present the most 'accurate'model but to present those commonly used at Rocketd.vne.

A fatigue analysisnormally proceeds along the following points:

(A) Define component geometry and material properties

(B) Perform global structuralanalysis

(C) Define stresshistory

(D) Count cycles

(E) Perform notch analysis

(F) Calculate damage for entireload IEstory

(G) Determine life

The first two items listed above are not directly addressed here.

PRECEDING P,'_GE BLANK NOT FILME[._
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2 Stress History

2.1 General

Analyses of rocket engine systems and components can be performed for transientand

steady state conditions. The conditions during transientstypicallyproduce only a few

cycles of higher load level responses and, therefore,affectonly the low cycle fatigue

damage. The following discussionwillbe limitedto steady statesince most analysis are

done for that condition. Furthermore, the steady state condition at maximum power

levelisnormally considered although SSME, for example, can operate at severalpower

levels.

The load history at steady state is usually composed of several sinusoidal loads vi-

brating each at their own frequency and random loads u defined by a power spectral

density function (PSD) superimposed onto the steady state load level.The sinusoidal

loads are often due to rotating machinery while the random loads are normally due to

combustion processes. In a typical deterministicanalysis each of three orthogonal axes

are analyzed separately.

The dynamic stressesat a point can be definedby the root-sum-square of the random

stresscomponent j, cr_j,the sinusoidal amplitude of each stresscomponent j for each

exciting frequency n, cr_jJ_,and the expected frequency, /_.p of the combined dynamic

load history (normally based on eiTectivestressand effectivestressrate).There are n,,

excitingfrequencies and only one source for the random loads. The detailsof how these

values are commonly calculated at Rocketdyne are given in reference [i].

An alternate and more preciseway to definethe dynamic stressesisto specifya PSD

of the random stresscomponents at the locationof interesttogether with the amplitudes

of the sinusoidalstresscomponents, cv_,*_and itsfrequency,/_'.

The followingsections show how the dynamic load history issimplifiedfor a fatigue

damage calculationat Rocketdyne.

2.2 Sinusoidal Plus 3c Value Random Loads

The complex dynamic stresshistoryissimply replaced by a sinusoidalstresshistorywith

the previously mentioned expected frequency/_cp and a constant combined amplitude

of
T[tll

= + :E • (1)
n==].
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The summation should be made at the stresscomponent levelso that the proper effective

stressof the stressrange can be calculated.

For detailson combining the dynamic loads referto [I].

The combined expected frequency, f_, isbased on the number of zero crossingsand,

therefore,can ignore some cycles which do not cross zero but nevertheless do damage

to the material. Furthermore, the 'local'mean stressand strain of a dynamic cycle is

ignored in the calculationof the fatiguedamage only the 'global'mean stressand strain

associated with the steady state mean load levelcan be considered. Figure I shows

a stressvs. time history and indicates the 'global'and 'local'mean stress. A similar

definitionapplies to the 'global'and 'local'mean strain. The above mentioned zero

crossingoccurs when the stressvs.time trace crossesthe 'global'mean stressin figurei.

2.3 Sinusoidal Plus P yleigh Distributed Random Loads

The peaks of the random load is assumed to follow the Rayleigh distributionwith the

probabilitydensity function

ifz>O

ifz < 0. (2)

stress

'local'mean stress

'global'mean stress

, time

Figure I: Typical stressvs. time history showing the 'global'

mean stressof the whole stresshistoryand the qocal'

mean stressof one cycle.
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The crin the aboveequation is the parameter of the Rayleigh distribution and equals

the previous]y mentioned root-sum-square of the random stress component j, a_. The
sinusoida_ load is superimposed assuming the frequency and the phase angles are all

identical Note that the sinusoidalpart of the combined stressamplitude isregarded to

be a fixed deterministic value while the random part followsa probabilisticdistribution.

The combined amplitude for the stresscomponent j iswritten as

,_ = A.; + _-,==zr'_'"_.j,. A>O_ (3)

with A being a parameter specifying the magnitude of the combined stress amplitude.

Let _ be defined as
B$8

wl

then the resultingprobabilitydensity function of the combined amplitude becomes

f(,_) = { "0(%_-½(_)= ifo_ > F.,,_"_;_ (4)

Figure 2 shows the resulting probability density function for the combined alternating

amplitude. From that figure it can be seen that the sinusoidal pa_ of the alternating

n(O

Figure 2: Simplified probabilitydensity function for the sinu-

soidalplus Rayl.eighdistributedrandom loads.
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stresssimply causes a shiftto the rightof the P_yleigh distributionI.

These combined asnplitudesare again assumed to oscillateat the previously mentioned

expected frequency, f_p.

The same remarks about the expected frequency and the 'local'mean stressand strain

a.smentioned in the previous section apply here.

2.4 Stress vs. Time History

This approach uses the PSD of the random stresscomponents and the set of sinusoidal

stress components, cr_j,*_with its frequencies, jf_" to create an actual stress vs. time history

at the location of interest. The PSD of the random stress component is discretized so that

the power spectrum in a small frequency window is replaced by an equivalent sine function

with a constant amplitude, _r.,,4,_and frequency, SV_''_b'' Thus, the whole PSD of the
-J,m, *

random load isreplaced by n,,,_t_ sinefunctionswith amplitude and frequency as derived

from the PSD. A sample of the actual time history isnow generated by combining the

various sine functionsgiven by the PSD with allthe initiallygiven sinusoidalamplitudes

-I--.-

(s)

The phase angles _° and _'_"_"_ have to be randomized i to arriveat one sample his-

tory. Several time history realizationsexistfor one given PSD and one set of sinusoidal

amplitudes. Therefore, a Monte Carlo simulation which includes the fatigue and creep

damage calculationhas to be performed to account for the variationsin those sample
load histories.

This method certainlyrequiresthe highest computational effortof allthe three pre-

sented approaches but removes the uncertainty associated with the use of the expected

frequency,/ec_. Proper cycle counting routinescan alsodetermine the 'local'mean stress

and strainfor subsequent consideration during the fatigue damage calculations.

A typical Space Shuttle Main Engine flightduration isapproximately 300 seconds.

It isoften not necessary to create a stressvs. time history for the whole 500 seconds to

iTh/s shiftresultsfrom the assumption that the sinusoidalload isin-phase with the random loads

and oscillatesat the same frequency.A correctsuperpositionof the random and sinusoidalloads would

resultin a distortionofthe originalRayleigh distribution.

2A uniform distributionbetween the limits0 and 2_" is used for randomizing each phase angle
independently.
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calculate the high cycle fatigue damage. A stress vs. time histors" of just a couple seconds

might be regarded as long enough to represent the appropriate fraction of the whole 500

seconds history. Significant savings in computations can be achieved if this shorter stress

history is used.

3 Cycle Counting

If the stress history is defined as described in section 2.2 or 2.3 then there is no need for

counting cycles. The number of dynamic cycles is defined by the combined expected fre-

quency/,_.p, the duration of the stress history and the steady state stress cycle (start/stop

cycle).

Cycle counting is necessary if the stress history is defined as stress vs. time. The

preferred method at Rocketdyne is the 'Loop Closure Method' as described to some

detail in reference [2] and in the example given in section 6.2 (page 2I).

The tracking of each closed stress-strain loop requires a large computer memory and

considerable computing time. Simplifications to the cycle counting routine can be made

if the effect of the 'local' mean strain (see figure 1) to the fatigue damage is ignored

for the high cycle fatigue _ cycles. Ignoring the 'local' mean strain can provide a rea-

sonable approximation to the high cycle fatigue damage if the 'global' mean strain is

relatively large compared to the 'local' mean strain. In this case a 'Half Cycle Count-

ing Method' can be implemented. This method identifies each half cycle between two

reversal points and calculates the fatigue damage due to that one reversal. The method

is easy to implement since the cycle counting simply proceeds from one reversal point to

the next. If the fatigue damage from one half cycle is calculated that half cycle will not
be required anymore and, therefore, it does not have to be stored.

-_The dynamic loads during steady state are commonly referred to m high cycle fatigue loads and the
loads during engine start or stop transients are usually called low cycle fatigue loads at Rocketdyne.
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4 Notch Analysis

4.1 Neuber's Rule

Cracks preferably initiateat stressconcentrations likenotches. A coarse grid finiteele-

ment model does not pick up the fulleffectof the stressconcentration and itisin practice

difficultto know how much the finiteelement model resultsaxe affectedby the stresscon-

centration.Itisa common practiceat Rocketdyne to conservativelyassume that a coarse

grid finiteelement model does not include the effectof any stressconcentration.

Several approximate analysis methods existto estimate the elastic-plasticstressand

strainat the notch root (surface)ifthe notch plasticitycan be categorized as contained

plastidty.The most often used method isNeuber's rule.

The elasticnominal stresscomponent j at some time tl when a stressreversaloccurs

in the stresshistoryisdesignated _I"°"(tl) (ittakes into account the steady statemean

stress).At time t2 > tl the next stressreversaloccurs and the elasticnominal stress

component j has the value _r_t"_'_(t2).Therefore, the elasticnominal stressexcursion is

/_ el,nora el,nora/, el,nora /
ai = _j t_) - % t_1)- (6)

The elasticstressconcentration factor Kt,i acts on the stresscomponent j. Therefore,

the elasticstressrange of component j at the notch root is

/__ldO_j r/ a el,nora= _,,j_j (7)

Now, the elasticeffectivestressrange Ace'S!can be calculated based on A(r_l using von
Mises' yield criteria

Neuber's rule states that

(s)

el 2

E '" elcr_27vt I
:_;pi ,,k .el--pl A,_el--pl Ix f= AO" "-'"elf = "_'e/f 2 g (9)

where

:l-pi _, l" d-M (_o)
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describesthe cyclicstabilizedstress-strainbeha_,'iorof the material and the factors of 2

resultfrom the applicationof Masing's hypothesis for a stabilizedhysteresisloop.4

The elastic-plasticeffectivestressA_ _ can be calculatedfrom equation 9 and the

A _tl-pl
resultingelastic-plasticstrain "'_ell from equation I0. The stress-strainbehavior is

often modeled by a bilinearcurve or a Ramberg-Osgood equation.

4.2 Fatigue Notch Factor

The totalfatigue lifeiscommonly defined to be the sum of the crack initiationlifeand

the crack propagation life. While the crack initiationlifes is quite weU characterized

by the local stressand strain,the crack propagation lifeis significantlydependent on

stressgradients along the crack path. Since most fatiguetestsare performed on smooth

specimens and provide the total fatiguelifethe differencein crack propagation behavior

of a smooth specimen and a notched specimen has to be taken into account by a factor.

This factoris calledthe fatigue notch factor,/(/.

It isimportant to realizethat ifonly crack initiationlifeis of interestand the test

data iscollectedfor crack initiationthen the fatiguenotch factor,K/is practicallyequal

to the stressconcentration factor, /'_'tfor linearelasticstresses(elastic-plasticstresses

can be handled with Neuber's rule).However, ifthe total fatiguelifeisof interestthen

the fatigue notch factor,K/is always equal or lessthan the stressconcentration factor,

/_'t(again for linearelasticstresses).

The fatiguenotch factor,K/can be estimated based on fracturemechanics consider-

ationssince itmainly depends on the differencein crack propagation. This isdescribed

in reference [3]for the linearelasticcase.

The fatigue notch factor, It'/is a function of notch geometry, material properties,

applied stressratio R, and number of cyclesto failureN!. However, ifthe fatiguenotch

4Equation 9 is sometimes written as

2 (l+ v) -_:_I _ ,-,l_.,l-pl
= -'_el/3 E 'xcrt//

which reflectsthe relationbetween effectivestressand effectivestrain.This form isnot used in this

write-up.

SThe stagesofcrack initiationand crackpropagation aredimcult todistinguishon theoreticalgrounds.

In practice,however, the crack initiationphase can be definedas the forming ofa crack with a fixedsize

which can be tied,forexample, to rnicrostructuralfeaturesofthe material.Because ofthe controversial

na=ure of thissubjectseveraldefinitionsbesidesthe one mentioned can be found in the literature.
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factor is desired at the endurance limit 6, K_ "d then simple expressions are available.

These expressions can be based either on a fatigue crack propagation threshold (see for

example [3]) or on an empirical equation developed by Peterson [4, pages 9 to 11]. Here,

only the latter is going to be shown:

I_T' = I+ g,-I (11)
I+_

where If_"d = fatigue notch factorat the endurance limit,

Kt = theoretical,linearelasticstressconcentration factor,

a = material constant depending on strength and ductility,

r -- notch root radius.

Some average values of a for aluminum and steel are given in reference [5].

If fatigue test data axe available for the notch size and operating condition of interest

it is strongly recommended to use those data directly.

Ifa fatigue notch factor isto be taken into account in the fatigue analysis then the

Kt, j in equation 7 has to be replaced by a If_ ._ (the fatigue notch factor acting on stress

component j)

A-el r-_d_ elno_
aj,K, = nlj _a./' (12)

and the effective stress range is calculated as in equation 8 but with the above stress

ranges.

F1_ A el

°re/f 'K! "_ L2 k =.g, :'%v,K,) +

, el _ el _2 _Ao-e I _2...K,:+

o,.,:+ + (13)

Note that the elastic effective stress range should be below the yield strength of the

material since the fatigue notch factor at the endurance limit is used!

As willbe discussed later,the fatigue damage isnot only dependent on the applied

stressrange but also on the mean stressand mean strain. In practice,it is easier to

define the fatigue notch factor in such a way that the actual localmean stress(and/or

strain)at the notch root isused. In other words, the fatiguenotch factorisapplied to the

alternatingstress(or strainrange) while the appropriate stress(or strain)concentration

sit is Rocketdyne's practice to define the endurance limit as the stress amplitude at 10 r cycles in a

S-N curve even if the curve does not e.xhibit a plateau there.
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factor is applied to the mean stress (or strain). This definition is used in the remaining

discussion.

It is agmn emphasized that Kf, j depends on the number of constant amplitude cy-
cles to failure N! among other things. This cycle dependency is in general not "known.
Therefore, if a vaziable amplitude load history -- for which each amplitude level occur-

ring in the history results in • different number of cycles to failure I is considered the

application of I('j, _ becomes difficult.
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5 Damage Accumulation

5.1 'Conventional' Method

For those components experiencing high cycleand low cycle fatigue damage as well as

creep damage, the following generalizedlifeequation iscommonly used at Rocketdyne:

_t,t = _.tH + 4_1I, + 4_, (14)

where _tot -" total damage,

¢/x = high cycle fatigue damage,

_/r. -- low cycle fatigue damage,

@, - creep damage.

The total damage _t,t is assumed to equal 1 at failure although experimentally ob-

tained values can vary from .25 to 3. The factors of 4 in the above equation are safety

factors; a safety factor on the equivalent alternating stress, a,q,u is applied in the case

of high cycle fatigue (see equation 16).

In general, the effective stresses (mean and alternating) axe used in the damage calcu-

lation for high cycle fatigue. However, when the alternating stresses in two perpendicular

directions have the same sign and are in phase, the maximum principal stresses (mean

and alternating) may be used. The effective stresses are used in the following discussion.

5.1.1 High Cycle Fatigue

The high cycle fatigue damage isevaluated by a lineardamage rule (Miner's rule)

_,_ = N_i----7iml

(15)

where n (0 = the actual number of cycles at a particular equivalent alternating stress

amplitude, -(/)C;eq a_t ,

,V/(1) the cycles to failure at that stress amplitude _,(i)-- _eq alt,

nHCF = the number of differentstressamplitudes _(0 in the stresshistory.@eq ait

The cycles to failure at the equivalent alternating stress amplitude can be read from

stress vs. life (S-N) material curves.
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The equivalent alternatingstresstakes into account the elect of the mean stress.If

testdata isavailablethen itshould be used otherwise a modified Goodman ruleis"used.

The rule isrepresented by the formula

..(')

(16)

where .C/) - equivalent alternatingstressamplitude at a stressratio R - -I,
_eq sit

(FS)eq..l_= factorof safetyon the equivalent alternatingstressamplitude:

(FS)ev..It= _ 1.25 for stationary components,
1.40 for rotationalcomponents,l

=(0 alternatingstressamplitude (includesthe effectof K/,j),t

_(i) = a_:tualmean stress(includesthe effectof Kt.j),

Fa. = ultinmte strength,

Ft_ = yield strength,

(O_me._)(0 = adjusted mean stress:

{_(i) if-'(') _(') Fry,
(_,)(0 = Ft,- _'_at"(0if_(')_,.t,% _z('),_e..,,> F,y, (17)

0 if _(0 F_.

The above equation is based on the assumption of an elastic-perfectlyplasticmaterial

behavior.

5.1.2 Low Cycle Fatigue

The low cycle fatiguedamage isaJsoevaluated by a lineardamage rule

<DIL = n_._r n(i)
i=, _ (18)

where n _0 = the actual number of cyclesac a particularequivalentstrainrange, _),

AT/(0 = the cyclesto failureat that equivalent strainrange, A_ ),

nr_cF = the number of differentstrainranges __) in the stresshistory.

The cycles to failureat the equivalent strainrange can be read from strainvs. llfe

material curves.
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The equivalentstrainrange takes intoaccount the effectof the mean stressand strain.

In practicethiseffectisoften ignored but approximations can be made as follows(iftest

data isavailableon this effectthen itshould be used). Manson's Method of Universal

Slopes equation [6]modified formean stressand mean strainby R. Cooper and discussed

with S. S. Manson is

/_ _-tot = A_,t + Ll_pl

= s._(F,,- _,._),v_.I=+ (D- l_,.nl)8_vf8
E (19)

where Aeu, t : totalstrainrange,

AQt = elasticpart of the totalstrainrange,

A@t -- plasticpart of the totalstrainrange,

D = material ductility (D = ln(_) and R.A. is the reduction of area

in percent),

_,=_ : mean strain.

If the effect of the mean stress is ignored on the low cycle fatigue life and only the

mean strainisconsidered then

and a simple expression for the equivalent strain range can be obtained

^.(0
(0• (i _"L_pl

,x_. = ,_) + ,,c,_,_.8 •
(1-

(2_)

Note that the form of the above equation isvery similar to the Goodman rule used in

high cycle fatigue.

where

S.l.S Creep Rupture

The creep rupture damage is again evaluated by a linear damage rule

"___, t U)

i=1 =_"

t¢i)= the actual time at a particularhold-time stresslevel,--(')" h.ol_
: .,.(0t(_0 d_e time to rupture at that hold-time stress, _'aol._

('2.2)
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n_.,_, - the number of difl'erent hold-time stresses in the stress history.

The time to rupture at the hold-time stress, t(_O, are obtained from stress-rupture life

curves, which are experimentally determined for the materials and temperatures of inter-

est. Empirical equations [8] for the stress-rupture Life curves axe usually written in the

following form

log t, = c + P(o',r) (23)

where p(_r, T) has been proposed in a number of difl'erent forms:

(1) P(csT) = b_/T + b2X/T + b_X_/T + b4Xa/T

(2) P(a,T) = t_/T + b2X + b3X' + b4X a

(3) P(_,T) - (T-T.)(_ + t_X + b3X= ÷ b,X")

Theseare the Larson-Miller [9],Sherby-Dorn [I0],and Manson-Haferd [II]relationships,

respectively. In the above expressions,

t, = the time in hours to rupture at a stresslevel¢r

c = the regressionconstant

bi = the coefficients(bl through b4)

T = the absolute temperature (T_ is the temperature of convergence of the

iso-stresslines)

X = the log stress,_g(_).

While allthe forms may be used to model a data set with varying degrees of goodness

of fit,experience and practiceindicz.tethe Larson-Miller relationshipadequately models

most materials and isusually the preferredequation form. Ifnone of these standard forms

satisfactorilyfollowthe data trends,various other combinations ofstressand temperature

m_y be tried.

5.2 Total Fatigue Curve

The interactionof fatigueand creep damage isaccounted for in a similar way as before

Ctot = ¢Io.,_, + ¢_ (24)

where ¢,o, = total damage,

¢.t_,i8_ = fatigue damage,

¢c = creep rupture damage.
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"The creep damage is calculated as described in section 5.1.3 and the total damage

_ot is assumed to equal 1 at failure as mentioned in section 5.1.

The fatigue damage is determined from a total fatigue curve as proposed by Morrow

A_t°.......2_= A_'_._2+ A_P--.-.21
2 2 2

_/(2#_)_ I + _j(2_v/)° I= _- F,.J _" (22)

and the consistent Ramberg-Osgood type of stress-strain curve

-- + -_" = + _I (26)

where A_ = stress range,

A_tot = total strain range,

AQ_ = elastic part of the total strain range,

A_l = plastic part of the total strain range,

N! = number of cycles to failure (2At! is the number of reversals to failure),

E - Young's modulus,

_1, _!, b, c = curve fitting parameters.

Knowing the.effective stress range, Ao "(i), the elastic and plastic strain ranges, Ae_ )
and- {i)_%1, can be calculated from equation 26. Then, the fatigue damage for all fatigue

cycles, n/.t, can be derived from equation 22

(27)
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6 Examples Using Deterministic Analysis Proce-

dures

6.1 Example I: 'Conventional' Method

The following example detailsthe analysisprocedure for a case when the stresshistory

is given as a superposition of sinusoidalloads plus a Rayleigh distributed random load

and the damage is calculated based on the 'conventional'method. The sinusoidalplus

random loads axe associated with high cyclefatiguedamage and are assumed to resultin

elasticstrainsonly while the start/stop loads are associated with low cycle fatiguemad

creep damage and can cause a locallyelastic-plasticresponse.

For the remainder of the text the foUowing abbreviation isused to specify the calcu-

lationof the effectivestressfrom the component stresses:

a'e,¢!

(A) Component Geometry and Material Properties:

The followingpaxameters are given:

Geometry: -Kt, j

K/,i

Properties:

D

E

r.cr
rwr

= elasticstressconcentration factoracting on stresscom-

ponent ],

= fatiguenotch factor(assumed to be constant here) for

stresscomponent ],

= yield mad ultimate strength,respectively,

= ductility,

= Young's modulus (E = d_r/d_ifl_l < Fry),

= tangent modulus (E_ = dot�de ifI_I > Fry),

= stressvs. lifecurve for high cycle fatigue,

= strainvs. lifecurve for low cycle fatigue,

= stressvs. time curve for creep rupture.

(B) Global Structural Analysis:

The global structuralanalysisprovides the followingvalues:

e_" = steady state mean stressduring operation for stresscomponent j,

o'_emt- stressat rest(e.g.stressdue to assembly loads) for stresscomponent j,

f_.._- combined expected frequency,
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_j:_ = sinusoidadamplitude of the stress component j for the n th exciting fre-"

quency, 1 < n < n,,,

nu = number of exciting frequencies (sinusoidal amplitudes),

a_ = root-sum-square of the random stress component j (a Rayleigh distri-

bution is assumed),

tt,t,_ = total operating time per flight.

The global response is assumed to be elastic so that Neuber's rule can be applied at a
notch root.

(C) Stress History:

The continuous probability density function of the sinusoidal plus random loads in the

interval r 0 < A < oo, an shown by the dotted llne in fig_e 3, is replaced by several

discrete amplitude levels (_" ")in t and the corresponding numbers of cycles n(I) where

1 <_ i <_ nHCF. The bars in figure 3 show the discrete'probability density function

approximating the continuous probability density function. The cumulative number of

cycleswithin the intervalAi _< A _< Ai+I is

= -

rsee equation 3 on page 4 for the meaning of A.

n(i)

ll. 1141I.=1 air

Figure 3: Comparison of the continuous and the discrete proba-

bility density function for the sinusoidal plus Rayleigh
distributed random loads.
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And the equivalezitdiscreteamplitude is

• rim@

\ J J ,qt

where

A,.i_. is placed in the interval Ai < A _< Ai+1 so that half of the number of cycles n(O Lie

in the intervalAi < A < Ami#a_,and halfofthem in A,,i_, < A < Ai+I. Other choices for

definingA,,i_, are also frequently used.

The intervallimitsA_ and A_+x ca_ be chosen arbitrarilyas long as the divisionsare

small enough to represent the continuous probability density function. The following

limitsaxe given as a suggestion:

0 < A < .15 --* in i step AA = .15

.15<A<3.05 _ in 29 steps AA =.I0

3.05 < A < 3.5 ---, in 1 step AA = .45

3.5_<A<5.0 ---* in3steps AA =.50

5.0 < A < co _ in I step AA = co

(D) Cycle Counting:

HCF

LCF

Creep

cycles: n(O

alt.stress: ( ..j,h.l) (i)
,at

O.e/mean stress: (./1)m...

cycles: 1 per flight

strain range: A-'_-P_

mean strain: _.el! /m.=_
a

time: tt,mt per flight

(Aca-pl_
peak stress: k el! }/i,,

(E) Notch Analysis:

The strain ramge for low cycle fatigue is
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_.:;, =, (u,,j_.;',-o_)

and the mean strainforlow cyclefatigueis

(o'q''' _ (-.cr)

_re/tel -" _ (Kt, j o'jd'n°m_)

(1--E_-E)_, {+ ¼+= \r,,/
\ eli } first ei

_reff

re'-,'_ (':;'): _,,e'-,'
k elf /mean E_, elf /first

if ,l(re/I > _y

if o.:_f _<_,,

The alternating and mean stresses for high cycle fatigue are

(a a ,_(0 (K/d (a et'"_) (0'_elf, KIJalt m if! k J /air]

(O.e_ _ {_el-pq
e/l/mun = kC%ll )/ir,t

The mean stress is constant for any i.

(F) Damage Accumulation:

,(o;'.-):7"').

.- / el \(i)
(o..eo.)(,_ o ,f {,,,e//.K,).,,> F,_

= (orei ) otherwise
\ e/f/mean

/ et ,_(i)

,.(i) = ka,Sl,h'I),l_
" eqart i -- (_"''")( )

F,.
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1

For the creep damage it is conservatively assumed that the peak stress (a:11-f_)/i,._

acts during the full operating time tt,nat. The factors of safety were omitted in all of the

above equations.

(G) Fatigue Life:
i

N1ti_h¢_ -- $ ltiah:

The assumption is made that the load history of each flight generates the same stress-

strain response. This is not always the case. For example, the very first stress cycle

starting from _, = e - 0 has a different stress-strain path than subsequent but otherwise

identica_ stress cycles since the subsequent cycles do not in general start at _r = _ - O.
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6.2 Example II: Total Fatigue Curve

This example uses a more refinedmethod. The stresshistory isgiven directlyas elastic

stressvs.time and the damage iscalculatedbased on the totalfatiguecurve. A Ramberg-

Osgood stress-strainrelationisused.

The function • (o-j)again definesthe effectivestressbased on the component stresses

as given on page 16.

(A) Component Geometry and Material Properties:

The following parameters axe given:

Geometry: I£t,j = elastic stress concentration factor acting on stress com-

ponent j,

K/,# -- K+,# -- crack initiation is only considered.

Properties: Ft,,= ultimate strength,

D = ductility,

£7 = Young's modulus,

_1, el, b,c = curve fittingparameters -- the fatigue curve and the

cycficstabilizedstress-straincurve have to be fitted

simultaneously and the fatigue curve should consider

crack initiationonly to be consistentwith Ift.j= I(l.j,

ec,.e,_(a) = stressvs. time curve for creep rupture.

(B) Global Structural Analysis:

The global structuralanalysis provides the followingvalues:

=_t(ri)= elasticstresscomponent j at the stressreversalpoints r_ where 1 < i <

ntot.o'er(r+)accounts for allloads (e.g.also mean operating loads) and

encompasses the whole stresshistory including any start/stop cycles,

t+ot=_= totaloperating time per flight.

The global response isagain assumed to be elasticso that Neuber's rule can be applied
at a notch root.

(C) Stress History:

Reorder the reversalpoints in the stresshistoryso that the very firstreversalpoint rl

corresponds to the largesteffectivestresslevelconsideringthe stressconcentration factor

(D) Cycle Counting:

The cycle counting routine is the controllin-_ routine of a damage accumulation calcu-

lation. It identifies each strain cycle Ae:_r) $ together with its mean stress a.,,o,, and
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its mean strain e,_e.,_. Several" cycle counting methods axe in use in practice but the

preferred one at Rocketdyne is the 'Loop Closure Method'. A verbal description of

this method is given in reference [2] and a short algorithm is given below. The stress
d-pt

(_"'_ and the ,train (e.,,),,., as wen _ the two functions NEUBER_ (Ao:_,)k "J] }!i,'*=

and NEUBEI_ (Ao'_l) are described in the next section '(E) Notch Analysis' while the

damage calculation is given in section '(F) Damage Accumulation'. The variables ri, 7-=,

rs, r=, and rd are pointers to several arrays storing information at the reversal points of

the stress history.

• Initialize:

all ri ---- 'av_lable'; 0 _< i < nt.,

r==O; rb--O; re=O; r=_=l;
r " t_-_•,., (z) = L .s.f ) Ii..,

e.,=.(n) = k .H ),i..

WHILE rd < n,,_DO

IF rb = 0 THEN

r= _-- r6; r b +-- re; 7"= +--rd;

ELSE

sign = +1

ra ,- rd + 1; sign _ -sign

• Calculate stressranges:

_,:_,= _(K,,_re/(,,)- ._(,.)])
_. = _(K,;[..,(,°): 4 (,,)])
_.., = • (K,,,[._,(,,)- ._(,o)])

IF r_ # 1 THEN

• Calculate starting point of Acr_,_,:

_.,.. (r,) = =.,.. (r.) + sign x NEUBEI_, (Aa_a)

e.,.. (r_) = ..,.. (r=) + sign x NEUBEP_ (A_o'_=)
END

A-a THENIF Acre..,. > ,,_.=.

• Accumulate damage with:
A ,. el-pi NEUBEI%

(_.t _

A,:;-/ = NEUBEI_ (A._.,,)
A ,. el-pl

o'.,,..., - o'.=. (rs) - sign x """=H / 2.
A .el-pl

e.,=. = e,,.., (rs) - sign x _,/1 / 2

• Mark reversal points r_ and r: as 'unavailable'.

• Look for the next three largestreversalpoints r=, rb,and r: so that

O<r=<r_; 0<rb<r:; O<r=<rs.
END
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END

END

• Calculate stress range:

_,_,.. = _, K,,__' (,o)- .'(,_)])
• Accumulate damage with:

A-"-" = NEUBEIL, (Aa_..)

A.,t-W A_a.,/y = NEUBER, ( _p,,.}

^ ,z-p_/2#..._ = #.,.., (rb) - sign x ,..,,,,!t

_.,,_ = e,a,,,(r_) - sign x Ae;_,'}_ / 2

STOP

(E) Notch Analysis:

The very firstelasticstressexcursion from zero load to the peak load during operation

is

(_.'_ (K..,_;'(,)"!!) !ir,= -- t_

So_,-,fo,(,",;,q _om
k _JJ I!i,a

and the elastic-plastic strainbecomes

d 2
(O'eff)fir_

E (oa-pq "
k "1I /lit.

The function NEUBEI_ (Ao_/) used in the cycle counting routine returns the solution

A=,_y pl of the following equation

- 2_,<_-,;_<;-," [_<7']°''

and NEUBER, (Aa.'_1) provides the elastic-plasticstrainrange
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(F) Damage Accumulation:

The damage increment due to one fullcycle (two reversals)is

where

A_ =A(:_w-A_,.
The dsrnsge increment isadded to the previous damage

(G) Fatigue Life:

The total damage per Right is

ttotal

k ell ]IirstJ

and, therefore,the allowable number of flights

I

Nlti#_,tm- @ Itlest

As in Example I itis again assumed that the load history of each Right generates the

same stress-strainresponse.
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7 Random Variables for the Damage Calculation

7.1 General

An attempt is made in this section to identify the parameters which can be considered

random variables in a probabilistic fatigue and creep damage analysis. The choice of

random variables and their interdependency is, of course, influenced by the desired so-

phistication of the model, the structural problem to be analyzed, and the available data

to characterize the statistical distribution of the input variables. For example, simplifi-

cations or approximations are necessary if not sufficient material test data are available

to fully describe the fatigue curve (S-N curve). The set of random variables given in the

following sections should be considered as one possibility.

Material behavior is in general characterized by a few material properties which are

often considered to be random variables. The mean value and other distribution pa-

rameters of these material properties depend on temperature among other things. It is

not feasible to fully characterize the whole distribution of the material behavior at each

operating temperature. Therefore, an interpolation scheme has to be devised to account

for the temperature (and other) dependency so that not too many material test results

are required.

The following sections only discuss random variables used for the damage calculation.

The whole life prediction analysis depends on more random variables than just the ones

occurring in the damage calculation. The global structural response as well as the local

notch response depends for example on the geometry, material properties, and applied
load history.

Due to the limited scope of thiswrite-up itisimpossible to discuss allissuesrelating

to a probabilisticfatigue analysis.Itisratherattempted to summarize some of the more

important issues.A more detailed discussionisgiven,for example, in reference[7].

7.2 'Conventional' Method

This section suggests random variables for the 'conventional' method as discussed in

section 5.1 (page 11).

• Total Damage _t,,t:

In a deterministic damage analysis the total damage _t,,t in equation 14 (page 11)

is commonly assumed to eaual I at failure. However, experimentally obtained

values for _tot can vary and. therefore, the total damage '_tot should be treated as a
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random variable. The variation is primarily due to load interaction effects but some

variabil/ty is also due to variations in the basic material behavior. The material

variations should be eliminated as good as possible or somehow accounted for to

determine the statistics of _tot.

• High Cycle Fatigue Curve rucr (c",tt):

The high cycle fatigue curve is commonly defined by the equation

= c

where C and m are material properties. If enough material test data is available

than both parameters C and m can be defined as correlated random variables.

However, most commonly m is considered to remain constant and only C is treated

as an independent random variable. The lognormal and the two parameter Weibull

distributions are most often used to describe C.

If the fatigue damage is to be calculated for a variable stress history then the failure

trajectory has to be defined. The failure trajectory defines the failure curve of one

fatigue specimen while the median S-N curve defines the failure curve of severs/

specimens. This subject is discussed in reference [7, pages 4-3 to 4-5]. The failure

trajectories are typically assumed to be parallel to the median S-N curve.

More sophisticated models are occasionally used in practice. One such model ac-

counts for the frequently encountered fact that the scatter in cycles to failure N!

increases with decreasing stress amplitude. This method is also discussed in refer-

ence [7,*pages 5-1 to 5-8].

• Low Cycle Fatigue Curve Fr.cF (£e):

The low cycle fatigue curve is commonly defined by an equz_tion similar to equa-
tion 23

where C and rn are material properties (of course, C' and m used here are dii_'erent

than the C and rn used in equation 2S).

Similar remarks as given above apply to thisset of data.

Creep Rupture Curve t,(o'):

In Eq. (23) the operating temperature T and stress_ may be considered as random

variables. The regression constant c and Temperature Ta are determined by test

results,which may be considered as randomly distributedalso. For the value of

c in Eq. (23) a value of c - -20 was initiallyproposed [9],but optimized vs/ues

between -i0 and -40 have subsequently been found to be suitabledepending on the

material [12].
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• Mean Stress Effect:

In a deterministic analysis the modified Goodman rule as in equation 16 (page 12)

is used to account for the mean stress effect if no test data is available. This bilinear

rule is not always confirmed by experimentally obtained results. Besides of treating

the ultimate tensile strength _= as a random variable another random vaxiable n

can be introduced
O'Qlt

"" = (1- J (30)

• Mean Strain Effect:

See equation 21 (page 13). The exponent .6 can be treated as a random variable

similarto the procedure used above.

7.3 Total Fatigue Curve

This section suggests random variablesfor the total fatigue curve method as discussed

in section 5.2 (page 14).

• Total Damage @,o,:
See 7.2 for a discussionon thisissue.

• Material Properties o'I, et, b, c:
Some items:

- Often b and c considered to be constant and only a/ and eI are treated as
random variables.

- If sufficientdata is not availableto fullycharacterize the distributionof _!

then the distributioncan be assumed to be similar to the distributionof the

true ultimate tensilestrength.

- Similar statement about e/and the true strainto failure(ductility).

- Manson's Method of Universal Slopes equation 19 (page 13) is very similar

to Morrow's equation 25 (page 15). If some parameters axe not known in

Morrow's equation then they could be 'borrowed' from _'[anson's_[ethod of

Universal Slopes equation.

- Note that the paxameters in equations 25 and 26 (15) are the same. Therefore,

in a statisticalanalysisboth equations have to be simultaneously fittedto the

testdata.
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• Mean Stress Effect:

The mean stress effect in equation 25 (page 15) is accounted for through the factor

F,./"

A similar modification as mentioned in section 7.2 can be made here. Therefore,

above equation becomes

F,../

and n istreated as a random variable.Of course,Ft_ istreated as a random variable

anyway.

• Mean Strain Effect:

As above. The factor

becol_es

i l mlo)

where n and L) are treated as random variables.

related to the n mentioned in the previous itern_l

The rt mentioned here is not
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8 Remarks to Analysis Procedures

Several limitations and restrictions to the presented analysis procedures have already

been mentioned in the proceeding text. The foUowing few points are being highlighted

because of their importance.

lo

o

.

.

.

Thermornechanical Fatigue: Strictlyspe-akingthe daznage calculationpresented

here isapplicable to isothermal loading only. However, itisa common practice at

Rocketdy'ne to use the presented method together with the worst material proper-

tieswithin the applied temperature range.

Neuber's Rule: Itisapplicableonly to situationswhere the notch isloaded in load

control and the net section remains elastic.For displacement controlled problems

Nenber's rule gives conservative answers (the predi_ed elastic-plasticstrainsare

too large).

Thermal Gradient: Strictlyspeaking the elastic-plasticsurface straincan aot be

calculated from the fictitiouselasticsurface stresswith Neuber's rule ifthe stress

is due to a thermal gradient. However, conservative answers can be expected if

Neuber's ruleisapplied anyway.

Multiaxial Fatigue: The stressvs. lifeor strainvs. lifematerial curves are gen-

erallyobtained from uniaxial tests.The presented methods consider a multiaxial

stateof stressby using the von MJses effectivestress.During multiaxial fatiguesev-

eralslipsystems can be activated and crazakscan thereforeform in severalplanes

which can not be accounted for by simply using the effectivestress. A more re-

finedprocedure for calculatingthe fatiguedamage may be necessary ifthe effectof

the multiaxial state of stressbecomes significant.Note that at notches one stress

component may dominate and a uniaxialstate of stressmay practicallyexist.

Crack Propagation: In the opinion of the author fatigueshould be strictlyap-

plied to crack initiationand fracture mechanics to crack propagation. However,

fatiguelifetestdata commonly includessome crack propagation life.Therefore, all

influencesaffectingthe crack propagation (e.g.stressgradients,hold times in hy-

drogen etc.)should be closelysimulated in the fatiguetestsor otherwise accounted

for.
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STOCHASTIC CONSTITUTIVE EQUATIONS

Polycrysralline Au,_tenitic Stainless Steels

o) l_pose

The purpose of this document is to suggest conslfimfive models which should be suitable

for describing the behavior of mmtenin'c stainless steels. Some of the models are fairly crude, and

cousequendy, their deficiencies and limitations are pointed out where appropriate. Also, in order

to suggest random constitutive model& an attempt had been made to identify which parameters

of the models could be created as being random. Finally, this document should be considered a

worldng document, since with experience, better ways to at_proacb the modeling may be found.

i) Ehstic _

Other than possible anisotropy due to the presence of texture, microsuucture has no signif-

icant effect on the elastic _.

2) .C_,.,_fj, lmla 9.,f Th_ _ ,[,_ ansion

Other than possible anisotropy due to the presence of texture, microsuucuu_ has no signif-

icant effect on the coefficiez_s of thermal expansion.

3) Um_ T_ne Stress-Strain _

From Ref [I], page 251,

o 15.4/(T) {4.4+23(C)+13(Si)+0.24(Cx)+0.94(Mo)+I.2(V)+O.29(W)cyy--

+2.6(Nb)+l-7(Ti)+0.82(Al)+32(N)+0.16(Sfen'ke)+0.46d "°'_} , (1)

where

o

d

(c)

(si)

= engineering yield mess in MPa with no previous cold work,

= graindiameterin ram,

= wt.-% carbon, and

= wt.-% silicon, etc.

The quantifies (C), (Si), ..., (N), ( 8 ferrke) and d may be taken as primitive random variables.

The function/(T) is included to account for the dependence of ¢yo on temperature T. It will be

described in more detail below (see Eqn 12).

PRECEDING PAGE BI.AI_K ,NOT FILMED
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In order to develop a simple model for the stress-straLn curve, it is assumed that the mate-

rial obeys the power law

where

(2)

S

s,°
e T

o
e#

m

= u'ae su'essat _ yield with no previous cold wodr.,

= total true su-a_
m •

= u_e su'aiu whims -S_, and

= suaiu hardsninSexpone_

The _ harden/hi exponm_t m depends on temperatm_. This will be discussed below (see

E_ t3).Thequmia=_s• and•o_ gi,_e_by

• • +,)> .;=,.<i+,)>
_, _- , S,=<i,(l ,

where

° = S_venby Eqn (1),O's,

E = Younl's modulus(which dependson temper), and
0o =engineemgswainwhenS -S,.£y

It should be noted thax Eqn (2) does not provide a good representation of the su'ess-strain curve

in cases where significant amounts of martensite form during straining. Strain-induced marten-

site fonnation can be su_ in sutinless steels with low Ni coment.

Eqn (2) is for solulion Ireled material, and does nol account for any cold wolk which may

have been performed on die matei4.al prior to tension leslinll. To accounl for the cold work, lel

• eo be the effeclive plaslic role slrain induced by previous cold wolking. If the woll.ing was

accomplished by un/directionnl rolling, then • vo is given by

e"=-_f_.31n(1-RA) ,
0<RA< 1 , (4)
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where RA is the reduction in area, which could be considered to be a primitive random variable.

The stress-strain curve for the pre-cold worked material is then

where

• = total true strain as measured from the beginning of the tension test.

The enginee:ing yield m'ess 0"7 depends on the amount of previous cold work. The value of 0"7

for the wo_:ed material may be computed implicitly from

L e, ) E

Given 0"7, one can compute

(5)

(6)

0" 7

¢,='_- , S,=0",(1+¢.,) , e,=In(l+¢., )

where

0"y

0"

Ey

E

S,

_y

= value of 0" at the initial yield point of the tension test,

= engineering stress as measured fi'om the beginning of the tension test,

= val_ of E at 0" = 0"7 '

= engineering strain as measm'ed fi'om the beginning of the tension test,

= value of S at 0" = 0"_,, and

= value of • at 0" = 0"y.

Now, at maximum load,

1e.=m-e ee , S.=Sy ,

where

(7)

(8)
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"o .

e, = value of • at maximum load, and

S, = value of $ at maximum load.

The engineering ul_na_ t_Ie _gth a, is

Sm

¢. =expCe,)- l _,=_ , (9)
' l ÷4.

where

4.

_m

= value of ¢ at maximum load, and

= value of <_ at maximum load.

Note that sy, ¢r7 , e,, S_, z,, o, and e, all depend on the amount of previous cold work, while S,

does not

Now, the hardcming curve should be specified to NESSU$ in terms of S vs. e e for finite

deformation analyses. Thus, given • and S from Eqn (5),

$

e1"=e-Inll +E exp (e)I
(I0)

For small strain analyses, the harden/rig curve should be specified in terms of <yvs. Ep, where

5
cr=exp(et') - l , <_=

exp(e)
(II)

As mentioned above, the yield su_.ss depends on r_nperamre. Fig I a directly below shows

the dependence of yield su'ess on temperature for type 304 stainless; Fig lb, for type 316 (these

figures are from Ref [2], page 88).
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Fig lo Fig lb

While these curves are for steels in a cold worked condition, Figs I nevercbeless suggest that, for

room temperature < T < -650eC, the yield su'ess decreases with increasing temperanne in a

parabolic fashion. Thus,/(T) in Eqn (I) should look like

/(T)=ko+ktT +/c:T _ , (12)

where/(T) = [ at room temperature, and ko, k, and k 2 are experimentally determined. When

determining lco,k tand k2 from tension tests at various temperatures, one should ensure that all of
0

the tests are performed at the same (reference) strain rate. This is because the value of ¢tz is sen-

sitive to strain rate at higher temperatures.

Young's modulus E also depends on temperature. As a f'n'st step in constructing E as a

function of temperature, Table 1 directly below may be of use, where E is in GPa (data taken

from Ref [3], page 13: and Ref [4], page 594).

215



AIS1304

AIS1316
|

AIS1348

25°C

193
i

193

Table 1

343°C

149

152

150

436"C

130

127

132

As temperature int_kses, m also generally decreases. At room temperature, m - 0.50 for

AIS1300 series standard ansteni_ stainless steels 301,302, 304, 310, 316, 321 and 347 (see

Table 11 in Ref [1]). From page 100 of Ref [2], m - 0.29 at T ffi650°C for type 304 stainle_.

Thus, a first approximation is

m = 0.5084-0.000 336T , (13)

where T is the temperature in °C. Note that m ffi0.50 at T = 25°C in Eqn (13). (Data for the

strain haxdening exponent m at T= 593°C for typm 304, 316, 321 and 348 sminlem can be found

on page 390 of Ref [5]). Also, 2"in Eqns (1), (12) and (13) could be treated as a primitive ran-

dora variable.

As a final comment, the model as given by Eel,s (1) through (13) is such that the ductifity

decreases with increasing temperature, which is consistent with experimental data in the range

25°C < T < - 650°C. At higher temperatures though ( T > - 650°C), it appears the ductility

begins to in_ with increasing temperature, contrary to the current model (see the data on

page 88 of Ref [2]).

4) Lowfocie f.gg 

A m_m-life approach is taken:

(14)

where
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Ag p

N:

E/

¢

--plasticstrainrange,

- number of cyclestofailure,

= half-cyclefatigueductility,and

ffifal_rue ductility exponent.

Some typicalvaluesofc (takenfxvm Ref [3],page 13)aregiveninTable 2 directlybelow.

AISI 3O4

AISI 316

AIS1348

- 1.75

436°C

-1.15

- 1.35

- 1.90 - 1.79

Table2

The low cyclefatiguebehaviorof austenLiticstainles,ssteelsisquitecomplex,especiallyat

higher temperatmes. Apparendy, the mechanLsms of cracking can be different depending on

temperature, f_'equency of cycLing, and minor differences in alloy composition. Also, fatigue

Limits may or may not exist. Thus, Eqn (14) is probably somewhat crude.

In any case, the quantity _/is usually on the order of the true strain at fracture e,. Fig 2

directly below (taken from Ref [1], page 256) shows e, and e. (e, = true strain at max/mum

load) for 17 wt.-% Cr stainless as a function of Ni content at room temperature.
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The non-monotonic behavior on the left-hand side of the plot is due to the formation of strain-

induced mnnemite. For higher alloy contents _ough (marked by the thick, strai_ lines), the

d_ce b_ e, _d _l _ m b_ CO_t (= e_ ). The9 _e relation

cy=e. +e, (15)

is suggested, where e_ = 0.90 at T = 25"C. From page 100 of Ref [2], e_ = 0.05 at T = 650°C.

So, a fu_t approximation is

e_ = 0.934- 0.001 36T, (16)

where T is the [emperam_ in *C. The effecl_ of tempe:ature and pzevious cold work on cfcan

be taken into account by caJculating e, in Eqn (15) fzom Eqns (4), (8) and (13).

The _'ve random vaziable: of thb low c/de fatigue model are RA and T. I[ may also

be des/table to make c random. If one chooses m do d_is, d_en¢ should probably exh/bit more

variability at higher tem_ than at lower ones (as suggested by Table 2). ALso, one should

be warned that this model does not take into account the effects of cycling frequency: wh/ch

could become fairly pronounced at h/gher temperatures. A phenomenological way of accounting
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for the cycling fzequency is outlined in Ref [3]. Finally, it is well-known that environmental

effects sometimes play an important role in low cycle fatigue behavior at elevated temperarares,

and this is not accounted for here.

5) ti_.C.yr_ f.ttiS_

A stress-Rfe approach is taken:

where

5,

Nt
S/

b

= effective amplitude of stress,

= number of cycles to failure,

= half-cycle fatigue strength, and

= fatiguestrengthexponent.

Typical values of/7 (taken fi'om Ref [3], page 13) are given in Table 3 directly below.

343°C

-5.35

-6.99

-9.80

Table 3

436°C

- 10.64

-8.55

-7.63

AISI 304

AISI 316

AIS1348

Mean stress effects are accounted for with the Goodman relation:

(7, -- (_,,

(17)

(18)

where
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iT.

= (1/2) (iT..- o,,.) ---stress amplitude,

= ( !/2) (ty... +_.,.) = mean m'ess, and

-- engineering ultimate temile strength,

and

£;,_ = maximum s'u'ess, and

£;_ = minimum stress.

The quantity Sl is usually on the order of the true monotonic fi'acmre strength. Thus, a (probably)

conservative approximation is

S/=s. , . (19)

where

SI = ,rue s'mm coues'ponding to =..

The effects of temperatm_, cmn_on, etc., may be taken partially into account by calculating

the quantities 5. and t_. with Eqm (1) through (13) of Section 3.

Some worth of caution ate now in order. Eqn (17) does not take into account the effects of

the cycting frequency. This may not be so bad though, since cycling f_-quency afl'ects high cycle

fatigue le_ than it does low cycle fatigue. Also, one should be cate_ to ensure that F,qns (17)

through (l 9) produce the correct trends. On one hand, as temperature increases 5/tenth to

decrease, which tenth to reduce the life. On the other hand, as seen f2xnn Table 3,/7 tenth to

increase in magnitude as temperatme in=emes for types 304 and 316 stainle, u, which tenth to

increa_ the life (this presumedly is because higher temperatures tend to diffuse the _ behav-

ior). Thus, there appears to be two competing mechanisms, and one should ensure that the cor-

rect one dominates for the particular siraation that happens to be under consideration.

6) F_ctme M_h_cs _

Figs 3 (taken from pages 392 and 393 of Ref [5]) show the fatigue crack propagation char-

acterisfics of types 304 and 316 stainless as a function of temperature. (Similar data for types 321
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and 348 stainlessmay alsobe found inRef [5]).The datashown inthefigureswere obtainedby

cyclingatR = 0 and 10 cyclesperminute,whex_ R = K,../K==, K...= thestressinnmsityfactor

atrninlrn.mload.and K_. = thestressintensityfactoratmaximum load.

!

41t •

i
i
D

r

,O.QI

Q _Q I _ , , l _o_,o 0
°_

$;w411l _flll91_ lr_l_ll II_i. ireS1 v ,q i

Fig 3a Fig 3b

AS isevident by the "kinks" in the above curves of crack growth race((_)vs.stress

intensityfactorrange (AK = K_. - K.m), diHere_ mechan/sms ofgrowth areexhibiteddepend-

ing on AK and temtm'mut¢. Also, as indicated by Fig 4 below (faxan page 396, Ref [_), the

behavior at room teznpezatu_ is quite insensitive to ahoy composition, wbezcas at higher

temp, the behavior is quite sensitive to alloy composition. (The meaning of the thick,

parallel dashed Lines in the figure will be described below). We now look at two different

methods of describing the fatigue crack propagation characteristics.

221



Fig d

The _ method is quite simp[e in thax the crack grovnh raze is assumed to follow a sm_e

Paris-type_uaxion:

=C (AK)" ,

where

AK

C

/I

(20)

= crack growdzraze (here, units = in/cycle),

= _ intensity factor range (here, units = ksi _/_),

= Paris coefflcimlt, and

= Paris exponent.
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In Fig 4, the width of the scatter is maxked approximately by the thick, parallel dashed fines of

slope n -- 3.2. The scatter at II00°F appears to be - 2.5 times that at 77OF. This may be

expre_ed as

(YC
--=0.8871+0.001466T , (21)

where

_C

T

= standard devimion of the Paris coefficient C,

= cYc at 77eF , and

= temperature in °F.

Using the points A and B in F'ql 4 to calculate C, one obtains 1o$C - -9.88 at 77eF and

logC - -9.12 at 1100°F. l.f these are taken to be indicative oftbe mean values, then (approxi-

mately),

log gc = - 9.937 + 0.000 7429 T, (22)

where

Ia.c = mean of the Paris coefficient C, and

T = temperature in °F.

Thus, a reasonable random fatigue crack propagation law is obtained ifC in Eqn (20) is

de,cribod by (21) and (22), and if in F.qn(20)

n -3.2 (23)

ismmL

A couple of comments on this first method are now in order. Fh'st, T should not be ran-

dora, since if it were, the statistics of C would be random. Also, besides C, the other random

variables of the model would be ai (an initial flaw size) and a! (a final or failure flaw size).

A second method is now described and illuswated for the type 304 stainless depicted in

Fig 3a. As is evident, there are two distinct regimes of behavior, a low AK regime and a high

AK regime. Let the low AK regime be defined by
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a, =C_(AK)"' ,

and the high AK regime by

a:-C=( AK) "_ ,

where here, as before, _i_ and _ 2have units

n 1, C2 and n: given in Table 4 below fit the dam in Fig 3a quite well.

110001:

800_

logCt

-6.37

-8.19

-9.¢7

(24)

(25)

in/cycle and AK has units ksi'_. The Values of C1,

nt

1.0

2.2

3.0

Table 4

(26)

logO2

-8.60

- 12.65

From Table 4, the following least square Linear fits are obtained:

logCl =0.0029038T-9.9563 ,

IogC: = 0.0135 T- 23.452 ,

n_=-0.001 7986T+3.252 ,

n= =-0.008 3333 T + 11.967 ,

n2

2.8

53

where T is in °F. Thus, for type 304 stainless, random Paris-type behavior is achieved by letting

T in Eqm (26) be random, and by calculadng a fzom

=max(_ _,a:) , (27)

As before, the initial and final flaw sizes (a_ and a/) may also be random. Similar procedures can

be used to describe the fatigue crack growth characteristics of other series 300 sceets.

In summary, for Paris-type behavior, AK is a function of the stress range A o"and the flaw

size a, and the growuh rate ,_ is a function of AK:
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AK=AK(Aa,a) , a=4(AK) (28)

Now, it is assumed that the major effect of microstrucmre is to cause the so-called "anoma-

lous" short crack behavior. If a is less that some microstrucmrally determined value a_, then the

crack growth rate is "anomalously" high. The parameter a_ is approximately

a_- 5d , (29)

where d is the grain size. Thus, to account for the short crack behavior, a is calculated as fol-

lows: (i) ira > a_, then the Paris-type relations (20) through (23), or (24) through (27), are used;

(ii)ira<a_, thena isgivenby

=AK (Aa,aD , =,i(AK ) (30)

Of course d, or equivalently a_, may be random.

Describe the time to rapture with the I.m'son-Miller parameter (Ref [6], page 164):

P(_) +y ,
logt_ = T + 273 (31)

where

tR

T

Y

P

= time to rupture in hours,

= temperature in °C,

= a mamdal pmpeny,

= applied stress, and

= Larson-Miller parameter.

Note that Y varies somewhat from material to material, and that Y - - 18 for

18 vn.-% CP-8 wt.-% Ni stainless steels (AISI types 301,302 and 304). Additionally, P is pro-

portional to the activation energy required for creep, and thus, also conceivably varies from

material to material. Note that P is an experimentally determined function of stress (P usually

decreases with increasing su_ss).
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Before discusaing how Eqn (31) should depend on mictos_ctu_ and composin'on, it

should be mem¢ion_l that Chapter 5 (pages 233-353) of Ref [2] giv_ a fairly thorough overview,

with over 400 refea_nc_, of the creep behavior of auste_i6c stainless s_sls. What is evidem

fxom the overview is th_ the creep behavior of these materials is f_ly complex. The mecha-

nisms under which creeping occurs, and hence the overall creep behavior, can depend sensitively

on grain size, temperam_, applied stress, composition, previous cold working and previous

ageing.

It is known that small ammmm of cold work (up m - 20%) can increase creep resistance.

Larger amounts of cold work, though, can acmaUy decrease creep resisr.ance by promoting

r_z_ystalliz_on. Previous ageing which resulm in precipitation hardening also increases creep

resistance, but overageing reduces it. Incorporating these effects into a simple model is di_cult,

and will not be anempced here (it appears that a more involved, unified approach would be

reqaiz ).

An upproximate method to accoun¢ for the effects of composition is now illustrate& From

Ref [2] (page 260), for AISI 304 stainless at 650 °C:

_, = 90.81 + 115 (Mo) +498.5 (W) , (32)

where

= stress(inMPa) corresponding to t_ = 10' h,

(Mo) = wt.-% molybdenum, a__

(W) = wt.-% tungsten.

Formulae giving o',for other temperatures,and forALS1316, may also be found on page 260 of

Ref [2].Now, Eqn 32 (orsomething similar)can be substitutedintoEqn (31) to constru_ the

approximate dependence of F on composition:

e(a,)
•Y = F (composition) = 4-_ (33)

Y_

A word of caution isinorder.Note thatEqn (32)isbased on t_= I0'_h, while times of interest

for the SSME are undou_edly much less. Obviously, finding or consmaccing a formula like

Eqn (32) based on :s " 10-100 h would be more desirable. ALso, substituting Eqn (32) into
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Eqn.(31)to obtain Eqn (33) assumes that the activation energy for creep is independent of com-

po&ition (which cannot be entirely trae). Nevertheless, trends for r_ predicted by using Eqn (31)

alongwith a relation c_cted similarly to Eqn (33) should be basically (or at least

qualitatively) correct.

The effect of varying temperature and at_lied stress is to cause d/fferent mechanisms of

creep to activate and deactivate. The mechanism which dominates for a particular stress-

temperature regime can be determined fi'mn "deformation mechanism maps" (suchas those in

Chapter 5 of Ref [2]). The effect of grain _ (d) on creep resistance depends on the particular

mechanism which happens to be active. For dislocation controlled (or power-law) creep, which

tends to be active at higher stresses and lower temperatures, the effect of grain size is relatively

weak (Ref [7]), and probably can be neglected. For diffusive creep though, the effects of grain

size can be significant. In the case of Naban'o-Herfing (or volumetric diffusion) creep, rn,,,-d 2;

and in the case of Coble (or grain bonndaty diffu._m'on) creep, rR,,_d 3 (Ref [6"J,pages 148-149).

In line with the above discu_on, a simple time to rupture model which incorporate, the

effect, of temperature, composition and grain size is as follows. FL-'_ for a steel with reference

composition and reference grain size ( do ), determine the function P = P (or) and the value of Y

in Eqn (31) from experimental data (call the value of Y so determined Yo). Next, using an equa-

tion like (32), determine a relation like (33), i.e., Y = Y (composition), where

Yo = Y (reference composition). The time to rupture including the effects of temperature and

composition is then

log t n = T + 27"'---'_+ Y (composition) (34)

Grain size is taken into account by

fR

where

(35)

d

do

= grain size,

= reference _ size,
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Appendix B.4

Probabilistic Analysis of Structures Involving Random Stress-Strain Behavior

H.R. Miliwater +

S.V. Harren ÷+

B.H. Thacker +

+ Southwest Resesearch Institute

++ The University of Illinois at Chicago
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PROBAB_C ANALYSIS OF STRUC'I_RES INVOLVING RANDOM _ BEHAVIOR

ELR. Millwater+', S. V. Hanen++', B. H. Thacke_."
+ Southwest Research InsTitute, San Antonio, Texas

++ The UniversiWofminnis at Chicago,Chicago,nl/nnis

This methodology ¢hm'acterizes the uniaxial
engineenng stress-strain crave shown in Figure l by five
engineering pmmeten. The pmmetem axe

• Elastic modulus (E)

• EnOnee_g stressatinitialyield (o,)
• Initial plastic hnnienlngslope(/I,)

• Engineering serem at point of ultimate load (o.)

• Engineering strain at point of ultimate load (_.)

<Y
2_tO SLOPE

_, --_

I

=_7/E

Figure I. Uniaxial Engineering Stress-31rain Curve

Uncertainties in the stress-strain behavior of a structure caa
then be simulated by letting these parameters be random.
Perturbations in the suess_train curve, needed to obtain
sensitivities, ate then simulated by perturbations in the these
parameters.

The approximations are given below in equation
form.

o(e)=Ee 0<¢<¢, O)

a(e) = o,e,(e) + o.e_(¢) + h, ss(e) e<e<e.

where _, =o/F. and g,(i = 1,2,3) axe the cubic
POlynomial shape functions. The boundary conditions me

o(_)=o,,o(¢.)=o.,o'%)=hy, and o'(e..)=0. The last
boundary condition enforces the slope at theultimate strain
to be zero. Applying thesefour boundary conditions
determines the cubic shape functions uniquely. The
boundary conditions in terms ofg/s are:

g,(e,)= l _,(e.)=o E,%)=o g',(E.)=o

g_(e,)= o e_(e.)= l _r'_(%)= o _',(e.) = o (2)

g3(_)= 0 S3(e..)= 0 t',(e,) = 1 g',(_) = 0

Solving the equations for the polynomial
coefficients yields

8,(¢) = _3- 3z2+ 1

g2(¢)= -2z 3+ 3z _ (3)

g,(e)=_(z -2_ +z)

E£- Oy
where z=_ vanes from O to l.

_,-_,

Inonlerto define the hwclening clmracteri_cs of
thematerialfor a mall slralnanalys/a, the unisxial curve
is defined forNESSUS/PEM in terms ofengineedng stn_8

o vs. plastic ensiaeenng emm/n e*. For a small slraln
malym, NESSUS/PEM also requires that the cm've of

engineedng backstmss m vs. _' be entered. In this model

m is given by the simple relation

m=_o-o,) (4)

where g determines the type of ban/ening, g = 0
ind/catesisouepic hanlenlng,_ = 1 indicates kinematic

lunrdening, and0 < g < I cocrespou_ to a m/xed hardening
rule.

Ifa finite deformation analysis is to be performed,
it is more appropriate to enter the hardening description into
NESSUS/FEM in terms of tree stresses and strains. In this
case, the uniaxial hardening curve is prescribed in terms of

line sueu S vs. plaslic tree strain e _,

E_(1 +Oo
8=

(_ +o)(e-vo) _

In summary, the hardening model for
NESSUS/FEM is defined completely by seven parameters:
five from the description of the stress-strain curve, i.e.,

E,a_, h,, a., and _; one firom the imroduction ofbackst_ss,
i.e., g: and one from the introduction of tree measures for

finite deformation analysis, i.e.. v. Poisson's ratio.

*Member AIAA. ASME

**Member AIAA

PR'ECED{NG PAGE _!,.AI',_KNOT FJL.MED
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Restrictions on Slress.SWsin Parameters

Obviously, the stal_im of the seven paranteters cannot be
pn_ribed mbitrarily, since meaningless ImMening curves
may result. Certain resuictiom must be imposed on the
engineering parameters in ozder to ensme that a physically
reasonable stress4train model will _ult from the cubic

polynomial. In pattioudar, we want to ensure that the
stress-strain curve is monotonically increasing,

oy < o(e) < o, for _, < ¢ < _,, and that it is convex upwat_i,

o"(E) < 0 for _, < ¢ < _. Mathematically, this caa be written
as

2E

oS'(O= _ {3(h,- 2h.)X- (2h,- 3h.)}< 0 (6)

where

E(o. - a,) (7)
h.-- Ee.-e,

and

Ee-a, (8)

1. E(_o-a 7) 2

gn,< _e.-o, <gh,,_>o,o.>o,,%>o (9)

These conditions will ensure that the sUess-suain curve is
monotonically inct_ming and convex upward for

e,<_<_,.

Tramformtion to More Natural Parameters

Because of the n_mictions on the suess-strain parameters,
the limits of some random variables depend on the limits
of other random variables. In order to alleviate this

situation, a set of new parameters, X,'s is developed such

tim the limits of tbese new parameters a_ constants. These
new pm'ameters am:

Era, -o,) _-_h,Xl = £E. - O,

E(O. - Oy) I

x_=0.-% (]o)

x,=%

Xs=E

Xo=v

X,=K

or inversely,

c_ffiX,

o,=X.

h, = 3(X, +X_)
_. =X,+X,

(11)

v-X.

gffiX,

The two new parameters, v and r,, ate necessary to

lete the desa_ption of the stress-strain curve toUS and can also be random. Thus, the ogghal
engineering pammetem ate tramformed into more natural

panuneters, X/s. The relatiomhip audits inverse, although
not linear, is easy to determine.

The restrictiom on the X,'s are now simple:

Xj>0 (/=1,2,3,4,5)

1

-t <x,a_ 02)

oax.,s t

C_flon Ammm Parameters

cmnrent vemion of NESSUS requues
statistically independent random variables. However, in
general the engineeringparametem and E,a,,o,,h,,C,,v,

and g orX/s will most likely be correlated. Thus, a general

procedure to handle correlated nonnonnal variables has
been developed. The correlated variables X/s am

transformed to independent, uncorrelated variables Z_'s.

The _ is based on the Natal transformation [9,10]
and m an extension of the method discussed in [6].
method constructsa joint probability density function for
the X/s which satisfies their marginal distributions and
conelation coefficients. The Natal tmmformation is valid
for any continuous marginal distribution although the initial
implementation has been set up for lognonnsl, nonng,
Weibull, Frechet, and Exmmze Value distributions only.
The random field problem, i.e., the random stress-suain

ammetem varying spatially over the structure, can be
andled with this method, but, it is not pmmaly

implemented in the code.

Snmmar7 of Transformation Procedure

• Compute statistics for the X,'s. These can be obtained
directly from the experimental results of stmss-stntin
cttrv_$.

• Transfmm the correlated X,'s to independent

uncorrelated variables Z,'s.
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Solution Procedure

The solmiou procedures already present in
NESSU$ can be used to analyze smzctmes with random

sue_-straln response. Thus, the probabilistic analysis

capabilities already developed cao be utilized. The steps

necessary to compute the probabilistic respoose of a
structure are outlined below.

• Define the stngture to NESSUS by comuucting a
finite element model

• De fine which qumtities are the random vmables along
with the ststistical information, mean, standard

deviation, and distribution type for each random

variable. The distribution type must be continuous and
can be chosen as: uniform, normal, lojpaormal,

Weibull, exm_me value, maximum entropy, Frechet,
tnmcated normal, and truncated WeibulI.

• Select the nu_onse to analyze, i.e., displacement,

frequency, buckling, flu/sue, etc. The response my
involve coupling the finite element n_sults with

res_mce models[l I]. If so, a Inedeflued mq_me
flora a NESSUS libruy may be selected or the user

maypropmnhis own.
• Select the pmbabil_c me_d opdom and the

cumuhtive distribution output points.

Sn_,dfk:atkm of S_aln Curve to NESSUS

The specification of the stress-strain curve to

NESSUS can be done easily in the user-written subroutine

UWKSL This subroutine has on inlmt the equivalent
plastic strain value, the temperatme at the node, the node

number and the X_ values. The equations which

parameterize the streu-strain curve in terms of a cubic

polynomial ate then used to compute the yield _ at this
plastic strain, the slope of the work hardening curve, and

the backstresz value. The _S probabilistic algorithms

pemub the X,'s in order to compute sew,idvities and pm

the penmbed values to UWKSL 'r'ue pemnbed

stress-strain curve is computed using the same equations as
before. A representative UWKSL routine is given in the
appeed_

Example lh*obk_

Anexample problem is analyzed to demomlrate the

capabilities of the code. The problem analyzed is tint of a
thick cylinder under internal pressure, l_gu_ 2. The
internal pre&sm_ and the stress-strain curve are random.

Figure 2. Thick-walled Cylinder Under Internal Pressure

The strew-strain parameters are represented by lognormal
distributions. In geoend, these parameters axe correlated:
however, for this example they are asmmmed independent.
The ctmnulalive digtfibstiou fuIgttoo of the equivalettt
plamic strain at the inmer radius is computed. In zdditiou,
the sens_tiea or relative impmmnce of the rmdem
vmiablea is computed.

The random variables statistics are shown in Table
1. The statistics am choaen to be of a typical steel

Vat/able Mean Standard
l)ev/adea

Xt

X_
X,
X,
x.
x,
x,

pressure

Solution Procedure

39.007 kal
44.326 ksi
10. kd
50. kal

30,000. kal
0.3
O.5

19.24.

4.0 Its/
6.$ ks/
2.0 ks/
5.0 ks/

Lsoo.kal
O.
O.
9.61

Table I

"Foe advanced mean value (AMV) solution
proceduze is used to compute the CDF. This procedme has
the advantage of accurately predicting the cumulative
distribution function, even for highly nonlinear problems,
with a small number of finite element calculations[l,6].

Ftrst-order analysis was chosen for this problem.
The mean value first order (MVI_) and advanced mean
value fi_t-onter (AMVF_) methods were used to compute
tbe CDF oftbe equivalent plastic strain at the inner radius.
Because this is a nonlinear analy_s, the cylinder is loaded
inc_mentally by 5% load increments.
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Step!establishesadatabaseoftherandomvariable
semitivitiesaboutthemeanvalue._ database was
computed for ten increments and therefore can be used
when computing the CDP at any of the tea inch,, ents.
Approximately seven nonlinear finite element solutions
were needed for this step, one deterministic, and one for
each random vamtble.

Perturbations of the stress*strain curve me
computed by penmbing each random variable
independently. The pemnd_l stmm-mrain curves ate
shown in Figune 3.

]

6&O-

........... PIL'Rf 2

.............. P(RI 3

_R[RT 4

o.oogel _ o;oi" "o._""e._"o._- o_ " _* oJo*
e

Figme 3. Perturbed Suess-Strain Curves

Step 2 is to compute the MVPO solution and the
mostmebablepoints(MPP's) at the desired _en_ by
using the sensitivity data and the fast probability memoQ.

This .pro_.. re does not require finite element analysis and
is typically done very quickly. Thus, the MVPO calculation
of the CDP can be obtained at a number of increments,
structural locations, etc., inexpensively once the semifivity
database has been established.

Step 3 is toupdntethe MVI_ solution using the
AMVIq3 method. The AMVIq3 method involves
computing s finite element,solution tribe _ predicted
most probable point. Note, the MPP's will in general be
different for each in_emem and each probability level.
Thus, if the solution was desbed for fotrr increments and
ten probability levels, the number of finite element analyses
would be. 4"10 - 40.

Purther steps which involve new sensitivity analysis
can be taken to check the AMV _lution. However, a simple
study at one _ent showed the AMV method to be
accurate.

Resulm

The CDFresults for loading in_ement 8 axe shown
in Figure 4. The mean value of equivalent plastic strain at
this incp_nent is 5.71E-4. We see fxom the figure that the

solution predicts negative equivalent plastic strain
for low probabilities. For example, at u --'-5, or aprobability
of 2.87E-7, the predicted equivalem plastic strain is -.13014
in/in. Physically, this is not possible. The MVFO solution

is not accurate in this region because it is using semitivities
aboat the melm value and does not know the physical
impossibility of neptive equivalent plastic strain.

CDF of guluivaltmt Plutle Straln
(IKremmt |)

|

$

z

I

e

.l"

.|

-4

4

*u, .o.N, *_, 0._, ,_, ***,

r4_ Iqm_ S4rdn

Figme 4. CDF of Equivalent Plastic Strain at Increment 8

The AMV_ method is t_.d to update the lVlV_
solution and umeo_ acumms for noalinemiti_ in the
mspome. 11am, the AMVPO solutioa Inedim zero
equivalent plastic strain for low pmbabiliu'm and oxn_y
predicts the mmcated form of the disuibutien.

Figure 5 shows the cumulative distribution function
of the equivalent plastic strain calculated at sevend load
incmmems, in effect showing the behavior of the CDP as
a fimction of loading. The dislnbutiom behave similarly
with the tnmcated effect becomin 8 less pronounced with
increa_g load as expected.

cDIr *4 l%l_wmmm _ S*r*m

(l_s 4. 6, 8, I0)

$

j.

i 0

.I

..+

4

4

-6 .....

.l.lll O III O HI O.OO! I.II| 0.1414

ll'lllm lll,lll

Figtme 5. CDF's of Equivalent Plastic Strain at Increments
4,6,8, 10

The probabilistic sensitivities are compmed by
NESSUS at each probability level and each load increment.
Figure 6 shows the probabflistic sensitivities at u -- +3, or
probability = 9987. for increments 4 ,-rod10. The random

variables, oy - yield stress, E - elastic modulus, and initial

234



load dominate the probabilistic solution. The initial load
becomes more dominate as the loading inc_m_uu. The
random variables, x 1,x2, and x3 age related to the hm_nin8
slope, the ultimate stress, and ultimate strain, and have little
effect at these low strains.

1.0

0.g

.a,
t 11.4

i
_. 0.2

I|.0

_y load

Figure 6. Probabilistic Semitivity Factom at u - + 3 (p =
.9987)

Condmtm

In summary, a method of characterizing random
stress-strain behavior with a small number of rmdom

variables has been devel_ This capability Im been
integrated into the probabilislic finite element analysis code
NESSUS. This system allows the user toperfonn advanced
probabilistic and reliability analysts on complex
engineering structures which exhibit nonlinear matenal
behavior.
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APPENDIX C

NESSUS Component Reliability Validation Problems

HR. Millwater

B.H. Thaeker

Southwest Research Institute

Appendix C.I

Displacement of a Tilted Response
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NESSUS S.0 Response Model Validation

1) Displacement Limits

Purpose:

Demonstrate structural reliability with respect to displacement limits.

Response:

The response is the displacement interference between the tip displacement of the beam, node

3 I, and a displacement limit do, which is also random.

g =do-dbm

Note, because the mean value magnitudes of do and db,.. are negative, the g function is reformulated as

g * ffi-g _ d _,, - do

When using the reformulated function, the probability of failure or P[g* < 0] is in the left tail as expected.

Model:

A 10 x 2 cantilever beam composed of 20 plane stress elements is shown in Figure 1. The random
variable, s are shown in the table below.

Variable Mean St. Dev. Distribution

End Load -100 lbf 20 lbf Normal

Young's Modulus lO.E6 psi 2.E6 psi Lognormal

Response Limit -0.025 in 0.0015 in Normal

Special Features:

Because of the tilted position of the beam, the desired response is the displacement perpendicular

to the beam axis as shown below. Thus, the CVARIABLE option is used to rotate the computed

displacements immediately after FEM and before probabilistic analysis. Also, note the decomposition

of the end load of the beam into x, y components when applied to the beam and in defining the force
random variable.

Results:

The results were computed using the reliability algorithm, ZLEVEL, in NESSUS 5.0 and

compared to the results using the PLEVEL algorithm. In addition, Monte Carlo results for the analytical

equation are shown.

P_qE/.CEDI_'JGPAGE BLANK NOT FJLMIED
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PFEM INPUT DECK(S)

*PFEM
*MVDEFINE

*DATATYPE 0
*RESPTYPE 1
*COMP 2
*PERT 3

1,2,3
*RANVAR 3

1,2,3
*COND 0
*NODE 32

*END
*AMVDEFINE

tCOMP 2
*NODE 32
*ITER

5 0.0025
*END
*ZFDEFINE

*COMPUTATIONALMODEL 1

1,2
*EXPLICITMODEL 1 i 0

3
*ZFUNCT 2 0

2
*CVARIABLE 1

TRANSFORMATION i
i 30.0
2 0.0
3 0.0

END
*END
*RVDEFINE

*DEFINE 1
ENDLOAD
-I00.0 20.0 NORMAL

FORCE
33 2 .216506
33 1 -.125
32 2 .433013
32 1 -.250
31 2 .216506
31 I -.125

*DEFINE 2
EMOD
10.E6 2.E6 LOGNORMAL
PROP 151
1 33 0.0 1.0

*DEFINE 3
DELTA0
-0.015 0.0015 NORMAL
*PERT 1
1 0.i
*PERT 2
2 0.1
*PERT 3
3 0.i
"END
"END
*FEM

the z function is pre-programmed as NESSUS model

rotate about the x axis by 30 degrees

negative mean is ok for normal

notice force random variable definition

0.0 0.0 0.0

C TILTED CANTILEVER BEAM DISPLACEMENT MODEL

C response is the tip displacement
C note: rotation is needed to compute tilted displacement
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*DISP
*CONS 0
*ELEMENTS 20
151

*NODES 33
*BOUND 6
*FORCE 6
*PRINT
*MONIT 12
*END
*MONITOR
TOTALDISP NODE
TOTALDISP NODE
TOTALDISP NODE
TOTALDISP NODE
TOTALDISP NODE
TOTALDISP NODE
FORCE NODE
FORCE NODE
FORCE NODE
FORCE NODE
FORCE NODE
FORCE NODE
*ITER 0 2
820 I.E-6
*COORDINATES

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

*ELEMENTS
1
2
3
4
5
6

33 COMPONENT 2
33 COMPONENT 1
32 COMPONENT 2
32 COMPONENT 1
31 COMPONENT 2
31 COMPONENT 1
33 COMPONENT 2
33 COMPONENT 1
32 COMPONENT 2
32 COMPONENT 1
31 COMPONENT 2
31 COMPONENT i

I 0.000000E+00
2 -.500000E+00
3 -.I00000E+01
4 0.866025E+00

0.366025E+00
-.133975E+00
0.173205E+01
0 123205E+01
0 732050E+00
0 259807E+01
0 209807E+01
0 159807E+01
0 346410E+01
0 296410E+01
0 246410E+01
0 433012E+01
0 383012E+01
0 333012E+01
0 519615E+01
0 469615E+01
0.419615E+01
0.606217E+01
0.556217E+01
0.506217E+01
0.692820E+01
0.642820E+01
0.592820E+01
0.779422E+01
0.729422E+01
0.679422E+01
0.866025E+01
0.816025E+01
0.766025E+01
151
28 31
29 32
25 28
26 29
22 25
23 26

0.000000E+00
0.866025E+00
0.173205E+01
0.500000E+00
0.136602E+01
0.223205E+01
0.100000E+01
0.186602E+01
0.273205E+01
0.150000E+01
0.236602E+01
0.323205E+01
0.200000E+01
0.286602E+01
0.373205E+01
0.250000E+01
0.336602E+01
0.423205E+01
0.300000E+01
0.386602E+01
0.473205E+01
0.350000E+01
0.436602E+01
0 523205E+01
0 400000E+OI
0 486602E+01
0 573205E+01
0 450000E+01
0 536602E+01
0 623205E+01
0 500000E+01
0 586602E+01
0 673205E+01

32 29
33 30
29 26
30 27
26 23
27 24
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%

7 19 22 23 20
8 20 23 24 21
9 16 19 20 17

10 17 20 21 18
11 13 16 17 14
12 14 17 18 15
13 10 13 14 11
14 11 14 15 12
15 7 10 11 8
16 8 11 12 9
17 4 7 8 5
18 5 8 9 6
19 1 4 5 2
20 2 5 6 3

C
C fix left end
*BOUND
1 I 0.0
1 2 0.0
2 I 0.0
2 2 0.0
3 1 0.0
3 2 0.0
C
*PROP 151
1 33 1.0 10.E6 0.0 0.0 0.0
C
C
*FORCE
33 2 -21.6506
33 I 12.5
32 2 -43.3013
32 1 25.0
31 2 -21.6506
31 1 12.5
*PRINT
TOTAL NODE
STRESS NODE
*END
*FPI
TILTED BEAM
"RVNUM 3
*DATASETS 4
*GFUNCTION 1
*METHOD 1
*ANALTYPE 1
*PRINT 0
*END
*ZLEVELS
0.0
*END

to_al load is 100 at 45 degree angle
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PFEM INPUT DECK (CLOSED-FORM)

*PFEM
*MVDEFINE

*DATATYP£
*RESPTYPE
*COMP
*PERT

1,2,3
*RANVAR

1,2,3
*COND
*NODE

tEND
*AMVDEFINE

"COMP
*NODE
*ITER

5 0.0025
*END
*ZFDEFINE

*EXPLICITMODEL 3
123

*ZFUNCT 5 1
1.0175

*UZFUNC
*END
*RVDEFINE

*DEFINE 1
£NDLOAD
-100.0 20.0

*DEFINE
EMOD
I0.E6 2.E6

*DEFINE
DELTA0
-0.015 0.0015
*PERT 1
1 0.I
"PERT 2
2 0.I
*PERT 3
3 0.1
*END
*END
*FPI
TILTED BEAM
*RVNUM 3
*DATASETS 4
*GFUNCTION 1
*METHOD 1
*ANALTYPE 1
*PRINT 0
*END
*ZLEVELS 1
0.0
*END

3

3

0
31

2
31

NORMAL
2

LOGNORMAL
3

NORMAL
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Figure 1.

Deterministic Solution of Tip Displacement

The tip displacement of the beam should be close to the analytical solution for the Euler-Bemoulli
beam

8 = _PL) = (-100)10s = -.005 in.
3El 3(IOE6)(I/12)(I)(2)'

The computed resultis-0.0050875in. The FEM model includessheardeflectionwhereas the

Euler-Bcmoulllsolutiondoesnot.

The reliability computed using the AMV based reliability algorithm with a finite element model

and with the closed form equations, and the Monte Carlo solution on the closed-form equation is shown
below.

MVFO

Quad F.st1

Quad Est 2
Iteration1

Iteration 2

Iteration 3

Iteration4

Monte Carlo,#25000, Harbitz

Method

PFEM closed-form

FPI gfunct6

-4.971

-4.279

-4.234

-3.969

-3.823

-3.812

-3.811

-3.783

-3.811

-3.708

3.336 E-7

9.393 E-6

1.149E-5

3.610 E-5

6.594 E-5

6.895 E-5

6.923 E-5

7.750 E-5

6.923 E-5

1.045E-4
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PFEM INPUT DECK(S)

*PFEM

"MVDEF INE

*DATATYPE 0

*RESPTYPE 1

*COMP 2

*PERT 3

1,2,3

*RANVAR 3

1,2,3

"COND 0

"NODE 32

"END

*AMVDEFINE

*COMP 2

"NODE 32

* ITER

5 0.0025

"END

*ZFDEFINE

"COMPUTATIONALMODEL i

1,2

"EXPLICITMODEL 1 1 0

3

"ZFUNCT 2 0

2

*CVARIABLE 1

TRANSFORMATION I

1 30.0

2 0.0

3 0.0

END

*END

"RVDEFINE

"DEFINE 1

ENDLOAD

-I 00.0 20.0 NORMAL

FORCE

33 2 .216506

33 1 -. 125

32 2 .433013

32 I -.250

31 2 .216506

31 1 -. 125

*DEFINE 2

EMOD

I0 .E6 2.E6 LOGNORMAL

PROP 151

I 33 0.0 1.0

"DEFINE 3

DELTA0

-0.015 0.0015 NORMAL

"PERT 1

1 0.1

"PERT 2

2 0.i

*PERT 3
3 0.1

"END

*END

*FEM

the z function is pre-programmed as NESSUS model

rotate about the x axis by 30 degrees

negative mean is ok for normal

notice force random variable definition

0.0 0.0 0.0

C TILTED CANTILEVER BEAM DISPLACEMENT MODEL

C response is the tip dispi .... ent

C note: rotation is needed u_ compute tilted displacement
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*DISP
*CONS 0
*ELEMENTS 20
151

*NODES 33
*BOUND 6
*FORCE 6
*PRINT
*MONIT 12
*END
*MONITOR
TOTALDISP NODE
TOTALDISP NODE
TOTALDISP NODE
TOTALDISP NODE
TOTALDISP NODE
TOTALDISP NODE
FORCE NODE
FORCE NODE
FORCE NODE
FORCE NODE
FORCE NODE
FORCE NODE
*ITER 0 2
820 I.E-6
*COORDINATES

I 0.000000E+00
2 -.500000E+00
3 -.100000E+01
4 0.866025E+00
5 0.366025E+00
6 -.133975E+00
7 0.173205E+01
8 0.123205E+01
9 0.732050E+00

10 0.259807E+01
11 0.209807E+01
12 0.159807E+01
13 0.346410E+01
14 0.296410E+01
15 0.246410E+01
16 0.433012E+01
17 0.383012E+01
18 0.333012E+01
19 0.519615E+01
20 0.469615E+01
21 0.419615E+01
22 0.606217E+01
23 0.556217E+01
24 0 506217E+01
25 0 692820E+01
26 0 642820E+01
27 0 592820E+01
28 0 779422E+01
29 0 729422E+01
30 0 679422E+01
31 0 866025E+01
32 0.816025E+01
33 0.766025E+01

*ELEMENTS 151
1 28 31
2 29 32
3 25 28
4 26 29
5 22 25
6 23 26

33
33
32
32
31
31
33
33
32
32
31
31

COMPONENT 2
COMPONENT 1
COMPONENT 2
COMPONENT 1
COMPONENT 2
COMPONENT 1
COMPONENT 2
COMPONENT 1
COMPONENT 2
COMPONENT I
COMPONENT 2
COMPONENT i

0.000000E+00
0.866025E+00
0.173205E+01
0.500000E+00
0.136602E+01
0.223205E+01
0.I00000E+01
0.186602E+01
0.273205E+01
0.150000E÷01
0.236602E+01
0.323205E+01
0.200000E+01
0.286602E+01
0.373205E+01
0.250000E+01
0.336602E+01
0.423205E+01
0.300000E+01
0.386602E+01
0.473205E+01
0.350000E+01
0.436602E+01
0.523205E+01
0.400000E+01
0.486602E+01
0.573205E+01
0.450000E+01

0.536602E+01
0.623205E+01
0.500000E+01
0.586602E+01
0.673205E+01

32 29
33 30
29 26
30 27
26 23
27 24
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7 19 22
8 20 23
9 16 19

10 17 20
11 13 16
12 14 17
13 10 13
14 11 14
15 7 I0
16 8 11
17 4 7
18 5 8
19 1 4
20 2 5

C
C fix left end
*BOUND
1 1 0.0
1 2 0.0
2 1 0.0
2 2 0.0
3 1 0.0
3 2 0.0
C
*PROP 151
1 33 1.0 10.E6
C

23
24
20
21
17
18
14
15
11
12
8
9
5
6

20
21
17
18
14
15
11
12
8
9
5
6
2
3

0.0 0.0 0.0

C
*FORCE
33 2 -21.6506
33 1 12.5
32 2 -43.3013
32 1 25.0
31 2 -21.6506
31 1 12.5
*PRINT
TOTAL NODE
STRESS NODE
*END
*FPI
TILTED BEAM
*RVNUM 3
*DATASETS 4
*GFUNCTION 1
*METHOD 1
*ANALTYPE 1
*PRINT 0
*END

*ZLEVELS 1
0.0
*END

total load is I00 at 45 degree angle
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PFEM INPUT DECK (CLOSED-FORM)

*PFEM
*MVDEFINE

*DATATYPE
*RESPTYPE
*COMP
"PERT

1,2,3
*RANVAR

1,2,3
"COND
"NODE

*END
*AMVDEFINE

*COMP
"NODE
*ITER

5 0.0025
*END
*ZFDEFINE

*EXPLICITMODEL 3
123

*ZFUNCT 5 1
1.0175

*UZFUNC
*END
*RVDEFINE

"DEFINE 1
ENDLOAD
-100.0 20.0

"DEFINE
EMOD
i0 .E6 2.E6

"DEFINE
DELTA0
-0.015 0.0015
*PERT I
1 0.1
*PERT 2
2 0.1
*PERT 3
3 0.1
*END
*END
*FPI
TILTED BEAM
*RVNUM 3
*DATASETS 4
*GFUNCTION 1
"METHOD 1
*ANALT YP E 1
"PRINT 0
*END
*ZLEVELS I
0.0
"END

3

3

0
31

2
31

NORMAL
2

LOGNORMAL
3

NORMAL

248



Appendix C._

Probablnqic Buckling Analysis of a Simply-Supported Beam

Buckling Limits

Introduction

Thisexampledemonstratesthecomputationofstructuralreliabilitywithrespecttobucklinglimits.
The probabilityofthefirstbucklingloadof asimplysupportedbeam exceedingauser-definedlimitis
computed and compared with the exact solution.

Analytical or Exact Solution

The limitstate,org function,isdefinedas

_,- _, where g, is a user-defined buckling limit and _ is the buckling load of the beam.

_zt

The Euler-BemouUi solution for the buckling load is _ =

Reference:

G. J. Simitses, An Introduction to the Elastic Stability of Structures, Prentice-Hall, 1976.

Modeling and Methods

A 10-in. simply supported beam composed of 20 beam elements, type 98, is shown below. The
cross-section is circular with inner and outer radii. The random variables are shown below.

Variable Mean St. Dev. Distribution

Inner Radius .1 .015 Normal

Outer Radius .2 .02 Normal

Beam Length 10 .5 Lognormal

BucklingLimit 3800 O.1 Normal

Noticethatthevarianceofthebucklinglimitissufficientlysmallastobe considered
deterministic.

The AMV iteration tolerance was set at 0.25%. The FEM iteration tolerance was also set at
0.25%.

Results and Discussion

The results were computed usingthe reliabilityalgorithm,ZLEVEL. The simple response
function z = _,- _ is programmed into NESSUS as model i and was used for this analysis. The

reliability solutions using the closed-form equations were obtained using three different methods:
Monte Carlo, FPI (Gfunction 6), and PFEM. Convergence was obtained using ZLEVEL after 2
iterations. The closed-form equations were adjusted by the ratio of the NESSUS/Theory buckling
loads computed at the mean value.
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x..

Deterministic Response

MVFO

Quad Est 1

Quad Est 2
Iteration 1

Iteration 2

Monte Carlo,#25000, Harbitz

Method

PFEM closed-form

FPI gf'unct 6

-4.971

-3.662

-3.079

-3.137

-3.135

-3.155

-3.130

-3.103

:::::::::::::::::::::::::::!!i!:?.""::i_ i::ii::i::i::ii ::::_::::iil

3.336 E-7

1.252 E-4

1.039 E-3

8.535 E-4

8.593 E-4

8.026 E-4

8.741 E-4

9.579 E-4
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PFEMInput Decks
PP'EMinputdecksforZLEVELSsolutionsusingfiniteelementmodelandclosed form equations

am shown below.

PFEM input deck - FEM model

*PFEM
*MVDEFINE

"COND 1
*DATAT YP E 1
*RESPTYPE 30
*COMP 1
*NODE 1
*PERT 4

1,2,3,4
*RANVAR 4

1,2,3,4
C "REST 1
*END
*AMVDEFINE

*COND
*COMP
*NODE
*ITER

5 0.0025
*END
*ZFDEFINE

*COMPUTATIONALMODEL 1

1,2,3
*EXPLICITMODEL 1

4
*ZFUNCT 1 0

rEND
C ..........

*RVDEFINE
*DEFINE 1

RO

0.2 0.02
BEAMSECTION 3

I 21 i .0 0.0
C .........

*DEFINE 2
RI

0.i 0.015
BEAMSECTION 3

1 21 0.0 1.0
C ...... --_---- ...........

*DEFINE 3
LENGTH

I0.00 0.5
COORDINATES

5
6
7
8
9

I0
II
12
13
14

NORMAL

NORMAL

1 1
1 1
1 1

ist eigenvalue
modal analysis (buckling)
response is the eigenvalue
has no meaning for eigenvalue
has no meaning for eigenvalue

1 0.0
2 0.0
3 0.0
4 0.0

0.0
0.0
0.0
0.0
0 0
0 0
0 0
0 0
0 0
0 0

LOGNORMAL

uses {do - d} as zfunctlon

0.0 0.0 0.0 0.0 0.0
.05 0.0 0.0 0.0 0.0
.i0 0.0 0.0 0.0 0.0
.15 0.0 0.0 0.0 0.0
.20 0.0 0.0 0.0 0.0
.25 0.0 0.0 0.0 0.0
.30 0.0 0.0 0.0 0.0
.35 0.0 0.0 0.0 0.0
.40 0.0 0.0 0.0 0.0
.45 0.0 0.0 0.0 0.0
.50 0.0 0.0 0.0 0.0
.55 0.0 0.0 0.0 0.0
•60 0.0 0.0 0.0 0.0
.65 0.0 0.0 0.0 0.0
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15 0.0
16 0.0
17 0.0
le 0.0
19 0.0
20 0.0
21 0.0
*DEFINE

BLIMIT
3800. 0.1
*PERT
1 0.i
*PERT
2 0.1
*PERT
3 0.1
*PERT
4 0.I
*END
*END
C

70
75
80
85
90
95

1.0
4

0.0
0.0
0.0
0.0
0.0
0.0
0.0

NORMAL

0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0

0.0
0.0
0.0
0.0
0.0

*FEM
C - SOA BUCKLING MODEL - PINNED COLU_
"DISP
*CONS 0
*BUCKLE 1 2
*FORCE 2
*BOUND 12

*BEAMSECTION 1
*ELEMENTS 20

98
*NODES 21
*PRINT
*END
*ITER 0 3
200 0.005
*COORDINATES

I 0.0 0
2 0.0 0
3 0.0 1
4 0.0 1
5 0.0 2
6 0.0 2
7 0.0 3
8 0.0 3
9 0.0 4

10 0.0 4
11 0.0 5
12 0.0 5
13 0.0 6
14 0.0 6
15 0.0 7
16 0.0 7
17 0.0 8
18 0.0 8
19 0.0 9
20 0.0 9
21 0.0 I0

*ELEMENTS 98
1 1
2 2
3 3
4 4
5 5
6 6
7 7

0 0.0 1.0 0.0 0.0
5 0.0 1.0 0.0 0.0
0 0.0 1.0 0.0 0.0
5 0.0 1.0 0.0 0.0
0 0.0 1.0 0.0 0.0
5 0.0 1.0 0.0 0.0
0 0.0 1.0 0.0 0.0
5 0.0 1.0 0.0 0.0
0 0.0 1.0 0.0 0.0
5 0.0 1.0 0.0 0.0
0 0.0 1.0 0.0 0.0
5 0.0 1.0 0.0 0.0
0 0.0 1.0 0.0 0.0
5 0.0 1.0 0.0 0.0
0 0.0 1.0 0.0 0.0
5 0.0 1.0 0.0 0.0
0 0.0 1.0 0.0 0.0
5 0.0 1.0 0.0 0.0
0 0.0 1.0 0.0 0.0
5 0.0 1.0 0.0 0.0
0 0.0 1.0 0.0 0.0
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8
9

10
11
12
13
14
15
16
17
18
19
20

"PROP
1 21

8
9

i0
11
12
13
14
15
16
17
18
19
20

98
1.0 10.E6

9
I0
ii
12
13
14
15
16
17
18
19
20
21

0.0
*BEAMSECTION 3
i 21 0.2 0.1
"BOUND
1 1 0.0
i 2 0.0
1 3 0.0
1 4 0.0
1 5 0.0
21 I 0.0
21 3 0.0
21 4 0.0
21 5 0.0
*FORCE
21 2 -1.0
"PRINT
TOTAL NODE
STRESS NODE
"END
C

C ... INCREMENT 1 ( BUCKLING ANALYSIS )
"END
*STOP
*FPI
TILTED BEAM
"RVNUM 4
"DATASETS 5
*GFUNCTION 1
"METHOD 1
"ANALTYPE 1
"PRINT 0
"END
"ZLEVELS 1
0.0
"END
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PFEM Input Deck. Closed.Form Model

*PFEM
*MVDEFINE

*COND 1 I
"D&TATYP E i
"RESPTYPE 30
*COMP i I
*NODE 1 1
*PERT 4

1,2,3,4
*RANVAR 4

1,2,3,4
C *REST 1
*END
*AMVDEFINE

'COND I 1
*COMP i i
"NODE 1 1
*ITER

5 0.0025
*END
*ZFDEFINE

*EXPLICITMODEL 4
1,2,3,4

*ZFUNCT 6 2
1
1.001675

*UZFUNC
*END

C------- ....

isU eigenvalue
modal analysis {buckling)
response is the eigenvalue
has no meaning for elgenvalue
has no meaning for eigenvalue

*RVDEFINE
•DEFINE 1

RO
0.2 0.02 NORMAL

C---- .... -------- ..................... ------------

"DEFINE 2
RI

0.i 0.015
C--- ........

"DEFINE 3
LENGTH

I0.00 0.5
*DEFINE 4

BLIMIT
3800. 0 •1
"PERT 1
1 0.I
*PERT 2
2 0.1
"PERT 3
3 0.1
"PERT 4
4 0.1
*END
"END

C------- .............

*FPI
TILTED BEAM
*RVNUM 4
"DATASETS 5
*GFUNCTION !
*METHOD 1
"ANALTYPE 1
*PRINT 0
*END

NORMAL

LOGNORMAL

NORMAL

notice small perturbation for imperfection
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%.

*ZLEVELS 1
0.0
*END
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Appendix C.J

Stress Response of a Circular Disk

1 Stress Response of a Circular Disk

1.1 Introduction

A circular disk is analyzed with two equal and opposite forces P acting along a diameter.

is assumed when the maximum compressive stress o due to the point loads exceeds some

limiting stress o0. Therefore, the probability of failure is given by,

Failure

Pt _P[<_o < a].

Once P! is computed, the reliability is given as 1-P I.

1.2 Analytical Solution

For point loading acting along the y-axis, the maximum compressive stress is located at the

center of the disk and is given by[l],

6P

_dr

where P is the point load, d is the diameter of the disk, and t is the thickness.

1.3 Modeling and Methods

A one-quarter symmetry model is used for the finite element calculations. A representation of

the disk is shown in Figure I-I and the f'mite element mesh is shown in Figure I-2. Plane stress

conditions are assumed, so NESSUS type 151 elements axe used. Symmetry boundary

conditions are imposed along the x=0 and y=0 coordinate lines. The error between the exact and

finite element solution is,

-3.01863
= 1.02721 (+2.7%)

-3.0

To enable comparison, this factor is used during the probabilistic calculations to adjust the
closed-form solution to match the finite element solution.
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Figure 1-1 Circular Disk Problem

Random variables include the point load acting at the center of the disk P, the thickness t, and the

limiting stress o0. Table I-I lists the input parameters used for these random variables.

Table I-I. Random Variables Used in the Circular Disk Demonstration Problem

Variable

P

t

o0

Description Mean

Standard

Devimion Distribution

Point Load 10at lb. it lb. Normal

Thickness 1.0 in. 0.1 in. Normal

Limiting Slress -5.0 psi 0.5 psi Normal

The NESSUS input deck for the PFEM analysis is shown in Listing I-I. The closed-form

solution for the stress is coded in the QRPLAT subroutine, shown in Listing I-2, as is the

Z-function Z = o0 - o. This model is selected as model 2 on the *ZFUNCTION keyword card.

Note that to compute the stress using the closed-form expression rather than by finite elements

only requires the *ZFDEFINE input block, shown in Listing 1-I, to be as def'med as follows:

*ZFDEF INE

*EXPLICI TVARIABLES 3

123

*ZFUNCTION 2 1

1.02721

*UZFUNCT ION

*END

Here, the coefficient 1.02721 is the factor between the exact and computed stress.

257



In the * ZFDEFINE block shown in Liming I-1, a *CV_tI/_BLE (computational variable) is

used. In this input block, CVARI/_BLE number I is defined as the resultant of OPERATION 2 on

theresponsevaluesforNODES I,2,3,4,5,6,and 7. OPERATION 2 isa pre-definedNESSUS

data operation to return the algebraic minimum value, which in this case, corresponds to the

maximum negative stress. The response quantity for the seven nodes is chosen to be the stress,

component 2, at condition (increment) 0, and is selected in the *MVDEFINE block.

The inputdeck fortheMonte Carlo simulationisgiveninListingI-3.

1.4 Remits and Discussion

To verifythepointprobabilityoffailurecomputation,an entire"cdf'of probabilityof failure

was computed using Monte Carlo simulationwith 100000 samples (Figure1-3).Figure 1-4

givesa close-upview of thepointprobabilityof failureresults.Table 1-2 givestheresultsin

tabularform.

Table 1-2 Results from the CircularDisk Demonstration Problem

Method

Monte Carlo (N=100000)

FPI (Closed-Form,GFUNC=6)

AMV+ (Closed-Form. GFUNC=I)

AMV+ (NHSSUS/FHM, GFUNC=I)

Probability of Failure

0.0041226

0.O0442O2

0.0037154

0.0037215

1.5 References

1. Timoshenko, S.P. and Goodier, J. N., Theory of Elasticity, McGraw Hill, 3rd ed., pg. 122,

1951.
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Figure I-2 Finite Element Mesh of the Circular Disk Problem
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Figure 1-3 Probability of Failure Results for the Circular Disk Problem
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CDF (Standard Deviations)
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Figure 1-4 Probability of Failure Results for the Circular Disk Problem
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Listing I-I NESSUS/PFEM Input Deck for the Circular Disk Problem

*PFEH

C

C Z-FUNCTION IS DEFINED BY FEN CODE AND 1 EXPLICIT VARIABLE,

C DESIGN FACTOR MODEL 2 IS USED.

C CVARIABLE IS THE MINIMUM FROM NODES 1-7 (DATA DEFINED IN *MVDEFINE)

C

*ZFDEF INE

*COMPUTAT IONALMETHOD 1 2

1 2

*EXPLIC ITVARIABLES 1

3

*ZFUNCT 2 0

*CVARIABLE 1

NODELIST 7

1234567

OPERATION 2

END

*END

C

C THREE RANDOM VARIABLES

C

*RVDEFINE

*DEFINE 1

LOAD

-15.70796327 1.570796327 NORMAL

FORCE

37 2 1.0

*DEFINE 2

THICK

1.0 0.1 NORMAL

PROP 151

1 37 1.0 0.0 0.0 0.0 0.0

*DEFINE 3

MAXSTRES

-5.0 0.5 NORMAL

*PERT 1

1 0.1

*PERT 2

2 0.1

*PERT 3

3 0.1

*END

C

C MV ANALYSIS. INCREMENTAL DATA, STRESS RESPONSE, COMPONEMT 2 (Y). NODELIST

C IS USED (SEE CVARIABLE IN ZFDEFINE) TO SEARCH FOR MAX STRESS.

C

*MVDEF INE

*DATATYPE 0

*RESPTYPE 3

*COND 0
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*COMP 2

*PERT 3

123

*RANVAR 3

123

*END

C

C AMV ANALYSIS

C

*AMVDEFINE

*NODE I

*COMPONENT 2

* ITERAT ION

10 0.005

*END

*END

*FEM

C SOA STRESS MODEL

C

C PARAMETER INPUT

C

*D ISP LACEMENTMETHOD

*CONSTITUTIVE 0

*ELEMENTS 27

151

*NODES 37

*BOUNDARY 14

*FORCE 1

*PRINT

*MONITOR 14

*END

C

C MODEL DATA INPUT

C

*ITER 0 2

20 0.01

*COORDINATES

- QUARTER ROUND

1 0.000000E+00 0.000000E+00

2 0.134787E+01 0.000000E+00

3 0.280959E+01 0.000000E+00

4 0.439479E+01 0.000000E+00

5 0.611389E+01 0.000000E+00

6 0.797821E+01 0.000000E+00

7 0.100000E+02 0.000000E+00

8 0.000000E+00 0.134787E+01

9 0.141905E+01 0.142403E+01

10 0.286135E+01 0.147480E+01

11 0.432867E+01 0.156613E+01

12 0.587043E+01 0.178268E+01

13 0.759568E+01 0.213750E+01

14 0.964279E+01 0.265840E+01

15 0.000000E+00 0.280959E+01

16 0.145117E+01 0.285388E+01

17 0.284501E+01 0.285999E+01

PLATE IN PLANE STRESS COMPRESSION
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18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

*ELEMENTS

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

*PROP 151

1 37

*BOUNDARY

1 1

1 2

2 2

0.412128E+01

0.536625E+01

0.682626E+01

0.863470E+01

0.000000E+00

0.152485E+01

0.289885E+01

0.387187E+01

0.456389E+01

0.563832E+01

0.707107E+01

O.O00000E+O0

0.173691E+01

0.331194E+01

0.403561E+01

0.504719E+01

0.000000E+00

0.211085E+01

0.265840E+01

0.000000E+00

151

1 2

2 3

3 4

4 5

5 6

6 7

8 9

9 10

10 11

11 12

12 13

13 14

15 16

16 17

17 18

18 19

19 20

20 21

23 30

24 31

25 26

26 27

27 28

30 35

31 32

32 33

35 36

0.294152E+01

0.336459E+01

0.406627E+01

0.504719E+01

0.439479E+01

0.430128E+01

0.411028E+01

0.389056E+01

0.457995E+01

0.564813E+01

0.707106E+01

0.611389E+01

0.583001E+01

0.533609E+01

0.680794E+01

0.863470E+01

0.797821E+01

0.756878E+01

0.964279E+01

0.100000E+02

9 8

10 9

11 10

12 11

13 12

14 13

16 15

17 16

18 17

19 18

20 19

21 20

23 22

24 23

25 24

26 25

27 26

28 27

29 22

30 23

31 24

32 31

33 32

34 29

35 30

36 35

37 34

1.00 30.0E+6 0.3

0.0

0.0

0.0
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3 2 0.0

4 2 0.0

5 2 0.0

6 2 0.0

7 2 0.0

8 i 0.0

15 1 0.0

22 1 0.0

29 1 0.0

34 1 0.0

37 1 0.0

*FORCE

37 2

*PRINT

TOTAL NODE

STRESS NODE

*MONITOR

STRESS NODE 1

STRESS NODE 2

STRESS NODE 3

STRESS NODE 4

STRESS NODE 5

STRESS NODE 6

STRESS NODE 7

STRESS NODE 1

STRESS NODE 8

-15.70796327

COMPONENT 1

COMPONENT 1

COMPONENT 1

COMPONENT 1

COMPONENT I

COMPONENT 1

COMPONENT 1

COMPONENT 2

COMPONENT 2

STRESS NODE 15 COMPONENT 2

STRESS NODE 22 COMPONENT 2

STRESS NODE 29 COMPONENT 2

STRESS NODE 34 COMPONENT 2

STRESS NODE 37 COMPONENT 2

*END

C

C

C

*FPI

SOA STRESS MODEL - QUARTER ROUND PLATE IN PLANE STRESS COMPRESSION

*RVNUM 3

*DATASETS 4

*GFUNCTION 1

*METHOD 1

*ANALTYPE 1

*PRINT 0

*END

*ZLEVELS 1

0.0

*END
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L_g I-2 QRPLAT Subroutine

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

SUBROUTINE QRPLAT (NFMVR, FEMRES, PLOAD, THICK, SYLIM, CFACT, RADIUS,

+ VALDV)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

STRESS RESPONSE OF A ROUND PLATE SUBJECTED TO 2 OPPOSING POINT LOADS

NFMVR - NUMBER OF FEM RESPONSE VARIABLES

FEMRES - FEM RESPONSE VALUE

PLOAD - APPLIED LOAD

THICK - THICKNESS

SYLIM - LIMITING Y STRESS

CFACT - FEM/EXACT CORRECTION FACTOR

RADIUS - RADIUS OF PLATE

VALDV - RETURNED Z-VALUE

IF VR>0, THE STRESS WAS COMPUTED BY NESSUS/FEM SO USE FEMRES.

OTHERWISE, COMPUTE STRESS USING CLOSED FORM EQUATION. NOTE THAT IF

THE STRESS CAME FROM NESSUS/FEM, THE APPLIED LOAD WAS HALVED SINCE

A SYPR4ETRY MODEL WAS USED; THEREFORE WE-MULTIPLY IT BY TWO HERE.

C

C 3(P)

C Syy -

C Pi (t) (R)

C

IF (NFMVR.GT.0) THEN

SIGYY - FEMRES

ELSE

PI - ACOS(-1.0D0)

TWO - 2.0D0

PLOAD - PLOAD*TWO

SIGYY - 3.0D0*PLOAD/(PI*THICK*RADIUS)

ENDIF

C

C LIKE DESIGN FACTOR MODEL #2: Z - S - R (RESISTANCE IS ALGEBRAICALLY

C LESS THAN STRESS, SO SWITCH FROM NORMAL CONVENTION)

C

C

C

VALDV - SIGYY*CFACT - SYLIM

RETURN

END
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Listing 1-3 Input Deck for the Monte Carlo Simulation

*FPI

SOA STRESS MODEL - QUARTER ROUND PLATE IN PLANE STRESS COMPRESSION

*RVNUM 3

*GFUNCTION 6

*METHOD 5

*ANALTYPE 1

*PRINT 0

*END

* ZLEVELS 1

0.0
*MONTE

100000, 1234.,

*EXACTPRM

21, 2, 0

10.0
1. 02721

*DEFRANV

LOAD

-0. 157080E+02

THICK

0. 100000E+01

MAXSTRES

-0.500000E+01

*END

0.9

0.157080E+01

0.100000E+00

0.500000E+00

0.200000E+01

0.200000E+01

0.200000E+01

(9/21/90)
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Appendix C.4

Fatigue Life of a Three-Point Bend Specimen

1 Fatigue Life of a Three-Point Bend Specimen

1.1 Introduction

The reliabilityof a three-pointbend specimen againstfailureby fi'actureiscomputed. Failureis

definedas

pt-p[N/<No ] "

where N! isthecomputed number of cyclestofailureand No isthe designlife.N/is based on the

number of cyclestoadvance a crack toa criticallength.

1.2AnalyticalSolution

The Paris relation,

 =C(AK)

isused todescribethecrack growth. The crackisgrown from an assumed mu'in_icflaw sizeaj

toa cridcailengtha, atwkich pointfailureisassumed tooccur,a!= a,.

Assuming that the stress intensity geometry factor is constant and that the stress range is

{0 < ¢y< ¢y.,..}, the Paris relation can be integrated from ai to a! to yield,

IV/= 2[a'_' -"a) - a_('-"a)]
C (2- n) (Ycy...,'_')"' forn _e2

where forthethree-pointbend specimen,

3PS

P, S, and B are defined in Figure 1-1.

1.3 Modeling and Methods

The material is 2024-'1"3 aluminum. The dimensions of the beam have been chosen such that the

stress intensity geometry factor is essentially constant.

A representation of the three-point specimen is shown in Figure 1-1. Using symmetry, only

one-half of the beam is modeled. Pinned boundary conditions are imposed at either end of the

beam and loading consists of a single point load acting downward at the center of the beam. A

2x2 mesh, shown in Figure 1-2, of plane stress (type 151) elements is used to model the beam.
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P

T
B

±

Figure 1-1 Three-Point Bend Specimen

The problem is solved thr_ ways: (0 using the NESSUS AMV+ algoriflnn with o_ obtained

from a simple finite clement model of the thr_-point bend specimen, (ii) using the NESSUS

AMV+ algorithm with am.. obtained using the closed-form solution, and (iiO using Monte Carlo

with _,,,._ obtained using the closed-form solution.

Random variables include the point load acting at the center of the beam P, the length of The

beam S, the height of the beam B, the initial crack length ai, the final crack length a/, the Paris

coefficient C, the stress intensity geometry factor F, and the design life No. The Paris exponent n

is assumed deterministic, and Y is assumed constant for all crack lengths between ai and a/.

Table 1-1 lists the input parameters used for these random variables.
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TableI-I. RandomVariablesUsedin theThree-PointBendFatigue
Life DemonstrationProblem

Variable

P

$

B

C

Y

n

Description

Point Load

Beam Length

Beam Width

FinalCrack Length

!InitialCrack

Length

Paris Exponent

Stress Intensity

C-con_try Factor

Paris Exponent

Design Life

Scan

6.6667 kips

8.0 in.

2.0 in.

0.09 in.

0.01 in.

1.16 E-09

1.0

4

Standsnt

Dcviation

0.6667 kips

0.8 in.

0.2 in.

0.009 in.

0.002 in.

1.16 E-10

Distribution

Lognormal

!Nomml

Normal

Normal

Normal

Normal

20,000 cycles

0.1

0

20 cycles

Normal

Normal

The NESSUS input deck for the PFEM analysis is shown in I.is_ng I-I. The calculation of N/is

coded in the PARI SNF subroutine, shown in Listing 1-2, and selected as model 3 on the

* ZFUNCTION kcyword card.The Parisexponent ispassed intoPARISNF as a user coefficient,

also on the *ZFUNCTION card. Note thatto compute thestressusingtheclosed-form

expressionratherthan by finiteelements only requiresthe * ZFDEFINE inputblock tobe as

definedas follows:

*ZFDEFINE

*EXPLICITVARIABLES

12345678

*ZF_CTION 31

4.0

*UZF_CTION

*END

The input deck for the Monte Carlo simulation is given inListing 1-3.
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1.4 Results and Discussion

To verify the point probability of failure computation, an entire "cdf" of probability of failure

was computed using both the NESSUS/PFEM AMV+ procedure and Monte Carlo simulation

with 100,000 samples (Figure 1-2). Figures 1-2 and 1-3 give close-up views of the point

probabili W of failure results. Table 1-2 gives the results in tabular form.

Table 1-2 Results from the Three Point Bend Specimen Demonstration Problem

Method Probability of Failure

AMV+ (NESSUS/FEM) 0.205119

AblV+ (Closed Form) 0.209152

Monte Carlo (N-10(X)00) 0.196020

1.5 References

1. Broke, D., "Elementary Engineering Fracture Mechanics, Martinus Nijhoff Publishers,

The Hague, 1984.
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Figu_ 1-2 Finite Elemcnt Mesh of the Three-Point Bend Specimen
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CDF (Standard Deviations)
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Figure I-3 Probabilityof FailureResultsforThree-PointBend Specimen
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CDF (Standard Deviations)
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Figure 1-4 Probability of Failure Results for Three-Point Bend Specimen
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Listing 1-1 NESSUS/PFEM Input Deck for the Three-Point Bend Dcmonsu'adon

*PFEM

C PARIS FATIGUE CRACK PROPAGATION DEMONSTRATION (BHT 9/90)

C

C The problem is to compute the probability that NF is less than

C NO where NF is the number of cycles to failure and NO is the

C design life.

C

C The material is 2024-T3 Aluminum. A Paris Law is used to describe

C the crack growth with an assumed detectable flaw size.

C

C Random variables include:

C

C 1 PMAX

C 2 S

C 3 B

C 4 AF

C 5 AO

C 6 C

C 7 Y

C 8 NO

C

point load acting at the center of the beam

length of the beam

height of the beam

final crack length

initial crack length

Paris coefficient

stress intensity geometry factor

design life

C The Paris exponent N is considered deterministic and the geometry

C factor is assumed constant for all crack lengths between AO and AF.

C

C The problem is solved several ways:

C

C (I) PFEM using FEM

C (2) PFEM using closed form equations

C (3) FPI using closed form equations

C (4) Monte Carlo using closed form equations

C

C The short subroutine PARISNF is used to compute the number of cycles

C to failure (Nf) from the input variables. This subroutine is called

C from both the UZFUNC (PFEM) and RESPON (FPI) routines.

C

Colol, jooooi.e.m,°°°,°oog,,...,,o...°..o...oo°...°o°..°°°°°$.,.-o°°-°°.,

C

C Z-FUNCTION DEFINITION

C

C THE "PARISNF" ROUTINE IS CODED AS USER RESISTANCE MODEL #3

C 8 RANDOM VARIABLES (3-COMPUTATIONAL, 5-EXPLICIT)

C 1 USER COEFFICIENT (PARIS EXPONENT,N)

C

* ZFDEF INE

*COMPUTATIONALMETHOD I 3

123

*EXPLICITVARIABLES 5

45678

*ZFUNCTION 3 1

4.0
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*UZFUNCTION

"_ *END

C

C RANDOM VARIABLES

C

C ONE-HALF SYMMETRY IS USED FOR THE FEM MODEL; THEREFORE, THE LOADING

C AND BEAM LENGTH IS HALF OF THE ACTUAL VALUE.

C

*RVDEFINE

*DEFINE 1

PMAX

3.333333 0.333333 LOGNORMAL

FORCES

9 2 1.0

*DEFINE 2

S

4.0 0.4 NORMAL

COORDINATES

1 0.0 0.0

2 0.5 0.0

3 1.0 0.0

4 0.0 0.0

5 0.5 0.0

6 1.0 0.0

7 0.0 0.0

8 0.5 0.0

9 1.0 0.0

*DEFINE 3

B

2.0 0.2 NORMAL

COORDINATES

I 0.0 0.0

2 0.0 0.0

3 0.0 0.0

4 0.0 0.5

5 0.0 0.5

6 0.0 0.5

7 0.0 1.0

8 0.0 1.0

9 0.0 1.0

*DEFINE 4

AF

0.09 0.009 NORMAL

*DEFINE 5

AO

0.01 0. 002 NORMAL

*DEFINE 6

C

1.16E-9 1.16E-10 NORMAL

*DEFINE 7

Y

1.0 0.1 NORMAL

*DEFINE 8

NO
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20000.0 20.0 NORMAL

*PERT 1

1 0.1

*PERT 2

2 0.1

*PERT 3

3 0.1

*PERT 4

4 0.1

*PERT 5

5 0.1

*PERT 6

6 0.1

*PERT 7

7 0.1

*PERT 8

8 0.1

*END

C

C

C MEAN VALUE PROBABILISTIC ANALYSIS

C

*MVDEFINE

*PERT 8

12345678

*RANVAR 8

12345678

*DATATYPE 0

*RESPTYPE 3

*CONDITION 0

*NODE 3

*COMPONENT 1

*END

C

C

C ADVANCED MEAN VALUE PROBABILISTIC ANALYSIS

C

*AMVDEFINE

*ITERATION

10 0.0025
*CONDITION 0

*NODE 3

*COMPONENT 1

*END

C

C END PFEM INPUT

C

*END

C

*FEM

C PARIS FATIGUE CRACK PROPAGATION DEMONSTRATION (BHT 9/90)

*CONS 0

*ELEMENTS 4

151
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*NODES 9

*BOUNDARY 4

*FORCES 1

*PRINT

*END

*ITER 0 3

20 0.01

*COORDINATES

1 0.0

2 2.0

3 4.0

4 0.0

5 2.0

6 4.0

7 0.0

8 2.0

9 4.0

*ELEMENTS

11254

22365

34587

45698

*BOUNDARY

120.0

310.0

610.0

910.0

*PROPERTY

0.0

0.0

0.0

1.0

1.0

1.0

2.0

2.0

2.0

151

I 9 1.0 30.0E3 0.3 1.0 1.0

*FORCES

9 2 3.333333

*PRINT

TOTAL NODE

STRESS NODE

*END

C

C FPI ANALYSIS CONTROL CARDS

C

*FP I

C PARIS FATIGUE CRACK PROPAGATION DEMONSTRATION (BHT 9/90)

*RVNUM 8

*GFUNCT ION 1

*DATASETNM 9

*METHOD 1

*PRINTOPT 0

*ANALTYPE 1

*END

*ZLEVELS 1

0.0

*END
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Listing 1-2 PARISNF Subroulin¢

SUBROUTINE PARISNF (NFMVR, FEMRES, PMAX, S, B, AF, AO, C, Y, RN0, N, ZVALUE)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

C

C FATIGUE CRACK PROPAGATION MODEL (PARIS LAW)

C

C,,....ee,,eeo,e,.o.,ee.e,,,,.ee o,e.oe o,o*e o,..,,e,,,oe..e.e,,ee.,,ee o,.

C

C NFMVR IS THE NUMBER OF FEM RESPONSE VARIABLES. IF >0, GET STRESS FROM

C FEMRES. IF NFMVR-0, STRESS IS COMPUTED USING CLOSE FORM EXPRESSION.

C NOTE THAT IN THIS CASE, THE LOAD (PMAX) AND BEAM LENGTH (S) ARE

C MULTIPLIED BY 2 SINCE HALF THE VALUES ARE USED IN THE INPUT DECK

C FOR THE SYMMETRY FEM MODEL.

C

IF (NFMVR.GT.0) THEN

SIGMAMAX - FEMRES

ELSE

TWOS - S'2.0D0

TWOP - PMAX*2.0D0

SIGMAMAX - 3.0D0*TWOP*TWOS/(2.0DQ*B**2)

ENDIF

PI - ACOS (-i. 0D0)

C

C COMPUTE THE NUMBER OF CYCLES TO FAILURE.

C

RNF - 2* (AF** (N/2) *AO - AF*AO** (N/2)) /

+ (AF**(N/2)*AO**(N/2)*C*(-2 + N)*PI**(N/2)*SIGMAMAX**N*Y**N)

C

C FORMULATE THE Z-FUNCTION. NOTE THIS IS SIMILAR TO S-R SO THE FUNCTION

C WILL BE <= 0 WHEN FAILURE.

C

ZVALUE - RNF - P.N0

C

RETURN

END
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Listing 1-3 Input Deck for the Monte Carlo Simulation

*FP I

C PARIS FATIGUE CYCLES TO FAILURE DEMONSTRATION

*RVNUM 8

*GFUNCTION 6

*METHOD 6

*PRINTOPT 0

*ANALTYPE 1

*END

*EXACTPRM

1810

4.0

*MONTE

100000, 1234.0,

*ZLEVELS 1

0.0

*DEFRANVR

PMAX

3.33333

S

4.0

B

2.0

AF

0.09

AO

0.01

C

0. 116000E-08

Y

1.0

NO

20000.0

tEND

1.0

0.333333 4.0

0.4 2.0

0.2 2.0

0.009 2.0

0.002 2.0

0. 116000E-09 2.0

0.1 2.0

20.0 2.0

280



Appendix C.5

Elastoplastic Low Cycle Fatigue Life of a Rectangular Plate

1 Elastoplastic Low Cycle Fatigue Life of a Rectangular Plate

1.1 Introduction

The probabilistic life of a simple rectangular plate is analyzed considering damage caused

by low cycle fatigue. In addition, a material strength degradation model is used in the analysis

that considers the effect of thermal fatigue cycles and temperature on the initial yield stress.

During damage due to low cycle fatigue, significant amounts of plastic strain are induced

each cycle. In this regime of plastic behavior, the fatigue life is much more accurately described

as a function of the cyclic strain amplitude as opposed to the cyclic stress amplitude in the case

of high cycle fatigue. Nevertheless, the effects of mean stress can be important, especially in the

transition region between high and low cycle fatigue. For this demonstration, the number of

cycles to failure is computed from,

N/-- A 10-0"(_) b

where N/is the computed number of cycles to failure, A and b are material parameters, a_, is the

mean stress measure, and A£ is the cyclic strain range measure. Here, these measures are

computed as,

1

a. = _Ca,_.+ a,,_,_

where a is the y component of the stress and e''_ is the plastic strain.

1.2 Description of the Problem

Figu_ 1-1 illustrates the analysis performed. The rectangular plate is subjected to fully

reversed strain cycling under uniaxial stress conditions. A bilinear stress-strain relationship is

used to simpLify the calculations for the demonstration. As shown in Figure I-I, the imposed

displacement cycles the plate through one and one-quarter cycles.

The deterministic elastoplastic calculations were checked by computing the stress and

strain at six points, illustrated in Figure I-5. Going point by point, the following relationships

are easily seen,
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O1

o"1=% el=-- E

_=e_ o'4= o'3÷E'(_- _)

_6 = a5 +E'(es-es)

where E is the elastic modulus, E" is the hardening slope taken from a uniaxial tension

stress-su'ain curve, % is the inidal yield stress, e._ is the minimum total strain, and e._ is the

maximum total swain. Because the displacement history is specified, the maximum and

minimum stress occurs at points 6 and 4, respectively, and the maximum and minimum plastic

strain occurs at points 2 and 4, respectively. Substituting the relations given above, the mean

stress and plastic strain range are,

(_ -t-(_4) E'(2E" - E) (2E E'e.mu - E2e.ffi,=+ E2e.m_ + 2E a_, - 2E" _y)

2 2E 3 '

E'(E - 2E') "

1.3 Modeling and Methods

A finite clement model of the rectangular plate was constructed using two square plane

su'css Linear elements. The boundary conditions and loading on the plate are shown in Figure

I-I. The applied displacement history is shown in Figure I-2.

Nonlinear material behavior is allowed using the bilinear stress-strain relation shown in

Figure I-3. The classical von Mists J2-flow plasticity model is used with isotropic hardening.

For the finite clement calculation of mean stress and plastic su'ain range, the inelastic portion of

the stress-strain relationship is described in terms of the effective plastic strain (as opposed to the

effective strain). In thecase of Linear hardening, a single parameter H (the hardening slope) is

input, computed by,

EE"

E -E'"
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Thematerialdamagemodelusedin this demonstration is the multi-factor interaction

(MFI) relation of Boyce [1J. Although, in general, a more realistic damage model may be

warranted, the MFI model provides a simple mechanism for treating any possible mat_'ial

strength damage indicator, such as crack length, fatigue strength, or stiffness. The MFI relation

models material degradation using a series product equation fitted to experimental or assumed

data. A single term is used to describe each primitive variable (stress, teml_'amre, cycles, etc. ).

The general form of the MFI relation is,

where A_-, Ai, and A_o axe the ultimate, current, and reference values of the i_' primitive variable,

ai is the value of an empirical constant for the i'* primitive variable, n is the number of primitive

variables considered, and Mp and Mp, are the current and reference values of the material

property. The effect of each primitive variable on the current material property varies from 1.0

(no effect on suength) to 0.0 (complete loss of strength) fines the reference value of the material

property.

Degradation of the initial yield stress is modeled as a function of temperature and thermal

fatigue primitive variables. Consistent with the linear hardening assumption, the current value of

the yield suess is computed by,

o,=e,+He',

j t

where _ is the damaged initial yield stress, H is the hardening slope, _ is the equivalent plastic

swain, and o_ is the yield strength of the undamaged material. Nrr, Nr, and Nro are the final,

current, and initial number of thermal fatigue cycles, and Tp, T, and To are the final, current, and

initial temperatures.

The deterministic finite element calculations were checked against the analytical solution,

and are shown in Table 1-1. Since a relatively loose convergence tolerance (1%) was used, the

agreement shown in Table 1-1 is acceptable. The y-component stress-swain response at node 5 is

plotted in Figure 1-4.
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Table 1-1. Comparison of Analytical and F'mite Element Solutions. _ is the y-component of the

total swain (applied), o, is the y-component of the Stress and _ is the y-component of the Plastic

Strain.

Point

1

2

3

4

5

6

e,

0.003471

0.015

0.00641

-0.015

-0.003352

0.015

Analytical

0.243

0.2968

-0.2968

-0.39723

0.39723

0.48426

0.0

0.011529

0.011529

-0.009991

-0.009991

0.008659

NESSUS/FEM

a,

0.01_5

-0.009322

Seven random variables, listed in Table I-2, were considered in the analysis. The values

for the terms in the MFI relation were calculated from a regression analysis of cast nickel-based

superalloy data, computed and tabulated in [2]. The values for the remaining primitive random

variables were arbitrarily chosen as:

Nrp = 1000 cycles; NTo = i0 cycles;

Tp=2732 ° F; To=68 ° F;

/7----4.
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Table1-2.RandomVariablesUsedin the Low Cycle Fatigue Demonstration Problem

Variable

q

T

U

H

A

Description

Mare_fl Yield

Strength

Number of

Thermal Fatigue

Cycles

Thermal Fatigue

Damage Exponent

Temperatm'e

Thermal Damage

Exponent

Hardening Slope

LCF Material

Parameter

Mean

0.5165

501

0.5

1562

0.5

5.0

6.304(10)"s

Standard

Deviation

0.02583

50.1

0.015

46.7

0.015

0.25

3.152(10) 4

Coefficientof

Variation

5%

10%

3%

3%

3%

5%

5%

Diswibufion

Normal

Loguormal

Normal

Normal

Normal

Normal

Normal

NESSUS Finite Element Analysis

The input deck for the NESSUS/PFEM analysis is shown in Listing 1-1. The calculation

ofN t is coded in the UZFUNC subroutine, shown in Listing I-2, and selected as model I I on the

*ZFUNCTION keyword card. The materialexponent,b,which isconsidereddeterministic,is

passedintoUZFUNC as a usercoefficient,alsoon the*ZFUNCTION card.

Four computational variables (CVARIABLE) are defined: (1) the maximum plastic strain,

(2) the minimum plastic strain, (3) the maximum stress, and (4) the minimum stress. These four

variables are passed into the UZFUNC user-routine (for the deterministic and each perturbed

solution) where the mean stress and strain range are computed and used in the calculation of Nl.

The seven random variablesconsideredintheanalysisaredefinednextinthe

*RVDEFINE section.Random variablesI-6 (4, Nr, q,T, u,and/-/)aredefinedas COEF

(coefficient)random variables.The COEF random variablesareperturbedand trackedduring

thecourseof thefiniteelementcalculationsinthe same fashionas otherFEM random variables.

In thisdemonstration,theCOEF variablesareused todefinetheyieldstressdamage model in

theUWKSL user-routine,giveninListingI-3.The seventhrandom variable,thematerial

parameterA, isan explicitrandom variable;therefore,thetypeand datablock are not input.
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Figure 1-5 diagrams the effect of a perturbation of the initial yield stress which results

from a perturbation of any of the primitive random variables o_, Nr, q, T, or u. Figure 1-6 shows

the effect of a perturbation of primitive random variable H.

The Mean-Value and Advanced Mean Value Iteration analysis options are specified in the

MVDEFINE and AMVDEFINE sections, respectively. To summarize, all seven random

variables and perturbations are selected, and the Advanced Mean Value iteration procedure is set

to continue until convergence is within 5% of the computed life or a maximum of 5 iterations is

reached.

To verify the demonstration, the analytical solution for the analysis was programmed in the

RESPON routine and a Monte Carlo simulation performed. The Monte Carlo input is given in

Listing I-4, and the RESPON subroutine given in Listing I-5.

1.4 Results and Discussion

The cumulative distribution function (CDF) for the number of cycles to failure is given in

Hgure 1-8. As shown, the agreement between the NESSUS AMV+ procedure and the Monte

Carlo simulation is quite good. Note that with the NESSUS AMV+ procedure, 52 response

function evaluations (NESSUS/FEM re-solutions, including perturbed solutions) were required

as opposed to 100,000 evaluations using Monte Carlo.

The probabilistic sensitivity factors for each primitive random variable is plotted in Figure

I-9 as a function of probability (CDF value). As shown, Nr declines in importance and

increases in importance of as one moves from lower probability to higher probability.

1.5 References

[1]

[2]

Boyce, L. and Chamis, C.C., "Probabilistic Constitutive Relationships for Cyclic Material

Strength Models, "Proc. 29* Structures, Structural Dynamics and Materials Conf.,"

Williamsburg, VA, April, 1988.

Boyce, L. and Chamis, C.C., "Probabilistic Constitutive Relationships for Material

Strength Degradation Models, "Proc. 30 _ Structures, Structural Dynamics and Materials

Conf.," Mobile, AL, April, 1989.
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Figure 1-1 Elastoplasdc Rectangular Plate Analysis
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3

Figure 1-5 Hysteresis Loop Diagram Showing Analydcal Calculation Points
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Figure 1-6 Perturbation in Yield Stress ay
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Figure 1-8 Cumulative Distribution Function of the Cycles to Failure Computed by NESSUS
AMV+ Procedure and Monte Carlo Simulation.
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Listing 1-1 NESSUS/PFEM Input D_ck

*PFEM

C ... LOW CYCLE/MFI FATIGUE DEMONSTRATION (MFX YIELD STRESS DEGRADATION)
C

*ZFDEFINE

*COMPUTAT IONALMETHOD 1 6
123456

*EXPLICITVARIABLES 1
7

*ZFUNCTION 11 1

4.0

*UZFUNCTION

C
C CVARIABLE 1 ... ALGEBRAIC MAXIMUM PLASTIC STRAIN AT NODE 5

C

*CVARIABLE 1

RESPTYPE ii
COMPONENTLI ST 1

1
NODELIST 1

5

CONDITIONLIST 50
0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

OPERATION 1
END

C

C CVARIABLE 2 . .. ALGEBRAIC MININUM PLASTIC STRAIN AT NODE 5

C
*CVARIABLE 2

RESPTYPE 11

COMPONENTL IST 1
1

NODELIST 1

5

CONDITIONLIST 50

0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29
30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49
OPERATION 2

END
C

C CVARIABLE 3 ... ALGEBRAIC MAXIMUM AXIAL STRESS AT NODE 5

C
*CVARIABLE 3
RESPTYPE 3

COMPONENTLI ST 1
1

NODELXST 1

5
CONDITIONLIST 50

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29
30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

OPERATION i

END
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C

C CVARIABLE 4 . .. ALGEBRAIC MINIMUM AXIAL STRESS AT NODE 5

C
*CVARIABLE 4
RESPTYPE 3

COMPONENTLIST 1

1
NODELIST 1

5

CONDITIONLIST 50

0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29
30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

OPERATION 2

END
*END

C

C ..... RANDOM VARIABLES

C
*RVDEFINE

*DEFINE 1

S IGY0

0.516473
COEF

1

2
3

4

5
6

*DEFINE 2

TEMP
1562.0

COEF
1
2

3

4
5

6

*DEFINE 3
TMP EXP

0.5

COEF
1

2
3

4

5
6

*DEFINE 4

CYCLES
501.0

COEF
1

2
3

4

5
6

*DEFINE 5

CYC EXP

0.025824 NORMAL

1.0000

0.0000

0.0000
0.0000

0.0000

0.0000

46.7 NORMAL

0.0000

1.0000

0.0000
0.0000

0.0000
0.0000

0.0015

0.0000

0.0000

1.0000
0.0000

0.0000

0.0000

NORMAL

50.1

0.0000
0.0000

0.0000
1.0000

0.0000

0.0000

LOGNORMAL
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0.5 0.05 NORMAL
COEF

1 0.0000

2 0.0000
3 0.0000

4 0.0000
5 1.0000

6 0.0000

*DEFINE 6

HSLOPE
5.0 0.25 NORMAL

COEF
1 0.0000

2 0.0000

3 0.0000
4 0.0000

5 0.0000

6 1.0000
*DEFINE 7

A

6.30351E-3 3.15176E-4 NORMAL

C
C ..... PERTURBATIONS

C

*PERT 1
1 0.1000

*PERT 2
2 0.1000

*PERT 3

3 0.1000
*PERT 4

4 0.1000

*PERT 5

5 0.1000
*PERT 6

6 0.1000

*PERT 7
7 0.i000

*END

C
C ..... MEAN VALUE PROBABILISTIC ANALYSIS

C
*MVDEFINE

*PERTURBATIONS 7

1234567
*RANVAR 7

1234567
*END

C

C ..... ADVANCED MEAN VALUE PROBABILISTIC ANALYSIS
C

*AMVDEFINE
*NODE 1

*COMPONENT 1

*CONDITION i

* ITERAT ION

5 0.05
*END

*END

C
*FEM

C ... LOW CYCLE/MFI FATIGUE DEMONSTRATION (MFI YIELD STRESS DEGRADATION)

C
C TWO ELEMENT TEST OF THE VON MISES PLASTICITY MODEL WITH ISOTROPIC
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C HARDENING. A BI-LINEAR PLASTIC STRAIN CURVE IS USED AND IS DEFINED IN

C THE USER SUBROUTINE "UWKSL". THE YIELD STRESS (SIGY) IS DEFINED USING

C THE MULTI-FACTOR INTERACTION (MFI) RELATION (BOYCE, 1988). THE MFI
C MODEL IS USED TO DESCRIBE THE INITIAL YIELD STRESS AS A FUNCTION OF

C RANDOM (COEF) PRIMITIVE VARIABLES.
C

C 23-NOV- 90
C

C. • • oo- i, i. • i. • • • • • • , o..e • i g • • • • ell • ioo I • • . .. i . . . . e . e e .. i o.. e i .o o . e eog . o

C

C ... PARAMETER DATA
C

*TANGENT 1

*CONSTITUTIVE 2
*NODES 6

*ELEMENTS 2
3

*BOUNDARY 5

*HARDENING 2
*UWKSL

*COEF 6
*PRINT

*MONITOR 4
*END

C

C ... MODEL DATA AND
C

*ITERATIONS 0

20 0.0100

*ITERATIONS 1 6

20 0.0000
*ELEMENTS 3

1 I 3

2 3 5
*COORDINATES

1 0.0000

2 0.0000

3 10.0000

4 10.0000
5 20.0000

6 20.0000
*BOUNDARY

1 I 0.0000

1 2 0.0000

2 1 0.0000
5 i 0.0300

6 1 0.0300
*PROPERTY 3

1 6 1.0000
*PRINT
TOTA NODE

STRE NODE

STRA NODE

PLAS NODE
*COEF

1

2

3
4

5
6

0.516473

1562.0

0.5
501.0

0.5

5.0
*MONITOR

TOTA NODE 5 COMP 1

STRE NODE 5 COMP 1

LOAD INCREMENT 0

0.0001

4 2

6 4

0.0000

10.0000
0g0000

10.0000

0.0000
10.0000

70.0000 0.2000
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STRA NODE 5 COMP 1

PLAS NODE 5 COMP 1
*END

C
C ... CONTINUE LOADING FOR NINE MORE INCREMENTS

C

*AUTO
9

*END

C
C ... UNLOAD FOR THE NEXT TWENTY INCREMENTS

C

*BOUN
1 1 0.0000

1 2 0.0000
2 1 0.0000

5 1 -0.0300

6 1 -0.0300

*AUTO
20

*END

C
C . .. RELOAD FOR THE LAST TWENTY INCREMENTS

C

*BOUN
1 1 0.0000

1 2 0.0000
2 1 0.0000

5 1 0.0300
6 1 0.0300

*AUTO

20
*END

*EXIT

C

C ..... FPI INPUT DATA

C
*FPI
C ... LOW CYCLE/MFI FATIGUE DEMONSTRATION (MFI YIELD STRESS DEGRADATION)

*RVNUM 7

*DATASETS 8

*GFUNCTION 1
*METHOD 1
*ANALYTYPE 0

*PRINT 0

*END

*END
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Lisfng I-2 NESSUS/FEM UWKSL User Rou6n¢ used to Define the Work Hardening Curve as

a Function of the Equivalent Plastic Strain and the MFI Model

C ... SUBROUTINE UWKSL ... USER-DEFINED WORKHARDENING SLOPE
C

SUBROUTINE UWKSL

1 (EPLAS ,SIGY ,HSLOP ,SHIFT ,TEMP ,NODE )
C
C **********************************************************************

C ** _*

C ** DEFINES THE WORKHARDENING SLOPE FOR J2-FLOW PLASTICITY **
C ** **

C **********************************************************************

C

C

C
C

C

C
C

C
C

C

C
C

C

C

C

C
C

C
C

C

C
C

C
C

C

C

C
C

C
C

C

C

C
C
C

C

C

C
C

ARGUMENTS :

EPLAS INPUT

SIGY OUTPUT

HSLOP OUTPUT
SHIFT OUTPUT

TEMP INPUT

NODE INPUT

THE EQUIVALENT PLASTIC STRAIN VALUE

THE YIELD STRESS AT THIS PLASTIC STRAIN
THE SLOPE OF THE WORFd4ARDENING CURVE

THE SHIFT TENSOR (BACKSTRESS) VALUE
THE TEMPERATURE AT THE NODE

THE NODE NUMBER

NOTES:

* THIS SUBROUTINE IS CALLED BY:

YIEL TO CHECK WETHER PLASTIC YIELDING OCCURS

* THE VALUE OF THE EQUIVALENT PLASTIC STRAIN IS A GIVEN QUANTITY.
IT WILL BE USED TO INTERPOLATE THE TABLES CODED BY THE USER IN
THIS SUBROUTINE OR AS AN INPUT FOR A FUNCTIONAL EXPRESSION.

* THE YIELD STRESS AT THIS PLASTIC STRAIN IS USED TO DETERMINE THE
RADIUS OF THE VON MISES YIELD SURFACE.

* THE SLOPE OF THE WORKHARDENING CURVE IS GIVEN BY

d Sigma

HSLOP -

pl

d Eps
pl

WHERE d Sigma IS THE STRESS INCREMENT, AND d Eps
CORRESPONDING PLASTIC STRAIN INCREMENT.

IS THE

* THE SHIFT TENSOR (BACKSTRESS) VALUE IS THE AMOUNT SUBTRACTED

FROM THE EQUIVALENT STRESS BEFORE COMPUTING THE GEOMETRY OF

THE YIELD SURFACE; IN OTHER WORDS, IT IS THE AMOUNT BY WHICH
THE YIELD SURFACE IS SHIFTED FROM THE ORIGIN DURING KINEMATIC

OR COMBINED HARDENING; IT IS ZERO FOR ISOTROPIC HARDENING.

C * THE TABLES AND/OR FUNCTIONS CODED IN THIS USER SUBROUTINE MAY

C DEPEND ON BOTH SPATIAL LOCATION (NODE) AND THE TEMPERATURE.
C

C **********************************************************************

C

IMPLICIT REAL*8 (A-H,0-Z)
C

C *****************************************************************

C ** BLOCK USRCOF: USER-DEFINED COEFFICIENTS FROM "*COEF" OPTION **
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C

C
C

C
C

C

C

C
C

C

C

IUNIT

JPERT

NCOEF

VCOEF

<-> UNIT NUMBER OF MAIN OUTPUT FILE (FOR ANY USER-DEFINED

OUTPUT THAT MAY BE GENERATED)
<-> CURRENT PERTURBATION NUMBER

(0 .LE. JPERT .LE. NUMBER OF PERTURBATIONS)

<-> NUMBER OF USER-DEFINED COEFFICIENTS (UP TO 10 ALLOWED)
<-> VALUES OF THE USER-DEFINED COEFFICIENTS FOR

PERTURBATION # JPERT

COMMON / USRCOF / IUNIT ,JPERT ,NCOEF ,VCOEF(10)

Cole Jooogmooo.l,ooeoooooeooeolooeooool JooggIIIaelolooloeoooeloeooooeoooo

C

C

C MULTI-FACTOR INTERACTION RELATION USED TO DEFINE THE YIELD STRESS AS
C A RANDOM FUNCTION OF TEMPERATURE AND THERMAL FATIGUE CYCLES.

C

SIGY0 - VCOEF (1)

TT - VCOEF (2)

QQQ - VCOEF (3)
RNT - VCOEF (4)

UUU - VCOEF (5)

HSLOPE - VCOEF(6)
C

C

C
C

C

C

HSLOP - HSLOPE

SHIFT - 0.0D0
TTF - 2732.0D0

TT0 - 68.0D0

RNTF - 1000.0D0
RNT0 - 10.0D0

SIGYI - SIGY0*

+ (( TTF - TT )/( TTF - TT0 ))**QQQ*
+ (( RNTF - RNT )/( RNTF - RNT0 ))**UUU

SIGY - EPLAS*HSLOP + SIGYI

WRITE(IUNIT, 1) (VCOEF(I),I-1,5),SIGYI,EPLAS,SIGY
1 FORMAT(' <-UWKSL-> COEFS 1-5 - ',5(2X, Ell.4),

+ ' SIGYI-',E11.4,' EPLAS-',Ell.4,' SIGY-',Ell.4)

RETURN
END
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Listing I-3 Section of Code from the UZFUNC User Routine used to Compu_ the Cycles to

Failure from the NESSUS/FEM Analysis

C **********************************************************************

C * MODEL 11: LCF/MFI DEMONSTRATION--2 ELEMENT ELASTIC PLATE TENSION

C * TEST WITH YIELD STRESS DEGRADED BY MFI RELATION.
C **********************************************************************

C

1100 CONTINUE

STNMAX - FEMRES(1)
STNMIN - FEMRES(2)

STRMAX - FEMRES (3)

STRMIN - FEMRES(4)
A - VALIV(7)

B - INT(PFCOEF(1))
DSTRN - STNMAX - STNMIN

DSTRS - (STRMAX + STRMIN)/2.0

VALDV - A/(10**DSTRS*DSTRN**B)

WRITE (ICONSL, ii01) DSTRN, DSTRS,VALDV

1101 FORMAT (' <-UZFUN-> DSTRN, DSTRS,NF - ', 3 (2X, E12.5) )
GOTO 9999
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Listing 1-4 Input Deck for the Monte Carlo Simulation

*FPI
C ... LOW CYCLE/MFI FATIGUE DEMONSTRATION (MFI YIELD STRESS DEGRADATION)

*RVNUM 7

*GFUNCTION 6
*METHOD 6

*PRINTOPT 0

*ANALTYP 0
*END

*EXACTPRM

24,3,0
4.0

0. 99867

0.93271
*MONTE

100000, 12345., 1.0
*DEFRANVR

S IGY0
0.516473

TEIvSP

1562.0

TMP_EXP
0.5

CYCLES

501.0

CYC EXP
0.5

HSLOPE

4.66667

A
6.30351E-3

*END

0.02582 2.0

46.7 2.0

0.0015 2.0

50.1 4.0

0.05 2.0

0.233333 2.0

3.15176E-4 2.0
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ListingI-5 SectionofCode from theRESPON User Routine used toCompum the Cycles to

Failure from the NESSUS Mont_ Carlo Simulation

C

C* LOW CYCLE FATIGUE RESPONSE WITH ELASTOPLASTIC MATERIAL DAMAGE (MFI) *

************************************************************************

C

C B.H.TRACKER ..... 24-NOV-g0
C

240 CONTINUE
C

C ... :rN:rTIALI_.E

C

EMAX - 0.015
EMIN - -0.015

E - 70.0
C

C . . .CURRENT VALUES FOR THE RANDOM VARIABLES

C

SIGY0 - XSTAR (i)

TT - XSTAR (2)
QQQ .,, XSTAR (3)

RNT - XSTAR (4)

UUU - XSTAR (5)

H - XSTAR (6)
A - XSTAR {7)

IB - INT (COEF (i))
SSFACT - COEF(2)

SNFACT - COEF (3)
C

C ...COMPUTE CURRENT YIELD STRESS USING MFI DAMAGE MODEL
C

TTF - 2732.0D0

TT0 - 68.0D0

RNTF - 1000.0D0

RNT0 - 10.0D0

SY - SIGY0*(( TTF - TT )/( TTF - TT0 ))**QQQ*

+ (( RNTF - RNT )/( RNTF - RNT0 ))**UUU
C

C ...COMPUTE MEAN STRESS AND PLASTIC STRAIN RANGE (CLOSED FORM)
C

DSTRS - H* (-E + 2*H) * (- (E**2*EMAX) + 2*E*H*EMAX +
+ E**2*EMIN + 2*E*SY - 2*H*SY)/(2*E**3)

DPSTRN - EMAX-EMIN+ (-SY-H* (EMAX-SY/E) - (SY+H* (EMAX-SY/E)) )/E
C

C ...ADJUST BY THE CORRECTION FACTORS (TO CHECK AGAINST NESSUS)
C

DSTRS - DSTRS*SSFACT

DPSTRN - DPSTRN*SNFACT
C

C ...AND FINALLY, THE NUMBER OF CYCLES TO FAILURE
C

RESPON - A/(10**DSTRS*DPSTRN**IB)
GOTO 9999
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1 RISK DEFINITION AND MEASURE

Risk is defined as consequence of unreliability. Risk analysis involves three questions

1. What can happen?

2. What is the likelihood it will happen?

3. If it does happen, what are the consequences?

In some instances failure itself may be considered as a measure of risk. But, or generally risk is measm_

mostly in terms of consequences such as cost in dollars and program delay. It is possible to translate

all the consequences to dollar cost using appropriate models. Risk can be portrayed as a curve of relative

frequency vs risk measure (Figure 1). Such curves can then be used to determine acceptable risk. This

form of portraying risk is useful, as the question of acceptable risk cannot be determined without

considering cost and benefit.

In the space propulsion system risk analysis the entire range of risk curve is of interest (low consequence

high frequency range, medium consequence medium consequence range, high consequence low

frequency range, see Figure 1). The high consequence low frequency range deals with criticality one

failures. The mid range deals with many maintenance items. The low range might be of impoxtmce

when public good will and confidence in the program are to be considered.

2 EXPOSURE CLASSES

In the first step in risk calculation, underlying reliability of the components/systems has to be plotted

as probability of failure vs exposure classes. The exposure classes deal with usage of the engine, and

different failure modes will have different exposure items as relevant items. It is recommended for

space propulsion systems that provisions be made for the following exposure classes. They are

1. Number of start/stops of the engine (LCF damage).

2. Total time in seconds as a function of power level (HCF damage).

3. Time at specific speed ranges (Resonance issues).

3 COST MODELS

In order to evaluate the consequence of engine loss, engine damage, and vehicle loss, it is necessary to

have an algorithm to calcttlate the cost elements that contribute to it. For the purposes of/'SAM

applications, the aim is to develop a simple yet cost-effec_ model.

Considering engine cost, and considering top down, the engine cost is driven by major component costs.

It consists of fabrication, support, and production material costs. For example, a typical propulsion
system major component classification in terms of cost elements can be

1. Engine Final Assembly.

2. Low Pressure Pumps.

3. High Pressure Pumps.

4. Main Combustion Chamber.

5. Power Head.

6. Ducts.

7. System Installation.

8. Electrical Harness.
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9. Actuation Systems.

Given the fabricatien/assembly man-hours, a composite wrap rate, and production material costs, the

totalcostof the engine can be calculated. Additional items tobe considered include lump sum items

which are supplied by subcontractors. If one is only interested in catastrophic failures, then the engine
cost can be added to other cost element such as vehicle cost, program delay cost (Le., standing army),

payload loss cost, redesign and requalification cost, loss of business cost, etc. It is estimated that the

ChallengerincidentcosttheU.S.2 billiondollars.Itmight alsobe notedthecostofenginesissmall

compared to this total figure. Therefore, cost models for catastrophic failures should concentrate on
the other elements described above.

Then it is assumed that in this program in addition to catastrophic failures we are also intexested in

noncatastrophic failures and costs associated with them such as maintenance, program delay, safe engine

shut down, and possible mission loss (but not vehicle). Just as unreliability has cost consequence,

increased reliability would also have a cost consequence in terms of increased qualification testing costs

as well as possible increase in payload to orbit cost because of increased engine weight. The ISB

(Specific Impulse) has a negative sensitivity and engine weight has a positive sensitivity to payload

cost.

The cost elements in the noncatastrophic failure modes should include:

I. Cost of removal of the component assembly and _on costs for new component

assembly.

2. Cost of shipping of the component assembly to the plant if it is a factory repair.

3. Cost of teardown and replacement in terms of labor hours (a function of tear down level),

labor cost, and new installation and material cost including cost of other mandatory

replaceable items.

4. Green run test cost for the new component assembly.

Noncatastrophic failure in the engine level may still mean severe component failure in the subassembly

level cascading through several parts in the same assembly or other adjacent assembly. Thus, the model

should contain logic that links the components affected with their severity level so that a true cost

consequence can be calculated. It must be realized that there is always some uncertainty involved in

the cascading aspect of the failure scenario.

4 COST MODEL APPLICATION

A very Izp'ge global model having the framework for other sensitivity studies in terms of total program

cost is beyond the scope of the PSAM effort even though the basic reliability data fz'om PSAM may be

needed for use in the model. The total program cost management as a function of unreliability might

require answers toverydifficult questions such as:

1. What is optimum number of engines to build (cost per engine goes down as the number of

unitsincrease)tosustain atrafficpattern?

2. What should be the target reliability and optimum design life of the engine that will result

inminimum cost?

3. Given thefactthatrefurbishmentofanoldengineinvolveshighengineeringtimeasopposed

toanew engine,what istheoptimum mix of oldand new engines?
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4. Given differing lives for a given reliability between many components and fixed budget,

which component and in what quantity to build that will best sustain the ground test and

flight traffic pattern?

Thus, it is advisable that PSAM concentrate on a small subset of cost models that contribute to strucu_l

failure risk management. In this regard it is expected that as part of PSAM application studies a few

candidate problems from the SSME program will be studied in consukafion with SSME Rocketdyne

management and PSAM contract team members. One candidate problem any deal with ground test

hardware and the other flight hardware. In ground test hardware, more risks are taken when compared

to flight. In ground tests, the components are used to their design limits to satisfy the fleet leader

requirements. Thus, acost benefit analysis based on probability of failures is feasible. In flight hardware,

the increased risk of failure when the rate power level is increased to 106% can be studied for identified

components sensitive to the power level change.
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Y.-T. Wu and T. Y. Torng
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Abstract

A probability analysis procedure is proposed that combines the convolution theorem with a

fast probability integration concept. The convolution theorem provides an exact solution for a sum

of random variables regardless of the shape of the distributions, and is suitable for engineering

problems that involve well-behaved performance functions with non-normal, continuous random

variables. The procedure consists of the following steps: (I) identify the most probable point of a

limit state, (2) establish a quadratic surface around the most probable point, (3) transform the

quadratic surface to a linear surface, and (4) apply a fast Fourier transform technique to provide a

fast convolution solution. Several numerical examples are provided to demons_ate the procedure.

Introduction

A central problem in probabilistic engineering analysis is the computation of the cumulative

distribution function (cdO of one or more performance functions, Zj(X) =fiX,, X2 .... , X,) where Xi

are the basic design (random) variables. Because performance functions are generally nonlinear

and random variables are generally dependent, the convolution theorem is usually thought to be

inapplicable to the problem. This report shows that the convolution theorem may be effectively

used when applied in conjunction with a fast probability integration concept.

Fast probability analysis is desirable in complicated engineering design problems. In

structural reliability analysis, efficient techniques have been developed based on a fast probability

integration concept that involves three major steps: (1) define a limit state and find a good

approximating point (e.g., a maximum likelihood point), (2) obtain an approximate function around

the approximating point, and (3) perform probabflistic analysis based on the approximate function.

The f'trst two steps provide the basis for the effective use of the convolution theorem.

This report describes how to start from a "good" quadratic polynomial and perform a

transformation to linearize the quadratic function. Subsequently. the convolution theorem is used

to compute the probability. To speed up the convolution calculations, a discrete fast Fourier

transform (FFT) technique is suggested. The report discusses short cuts in implementing the FFT

technique.

PRECEDING PAGE BLANK NOT FILMED
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Fast Probability Integration

The fast probability integration (FPI) concept originated from the field of structural reliability

analysis. While the method requires that the performance functions be well-behaved, the concept

is general and may be applied to a wide variety of engineering problems. In this section, we will

d_cribe the concept using the terms commonly used in structural reliability.

A limit statefunctionisdefined as:

g(x)= z(x)- z = 0 (t)

where z isa realvalue.The g-functionseparatesthedesignspace into"failure"and "safe"regions.

Prom thisdefinition,the cdf of Z atz,Fz(z),isthe probabilityof [g < 0]. The cdf of Z can be

establishedby varyingz.

Given thejointprobabilitydensityfunction,fx(X),theprobabilityoffailurecan be formulated

as:

f/

where _1 is the failure region. This multiple integral is in general very difficult to evaluate.

Alternatively, a Monte Carlo solution provides a convenient, but usually time-consuming

approximation. For practical engineering applications, efficient approximate solutions are desirable

and can be obtained by the recently developed structural reliability analysis methods [l, 2].

The first step in the reliability analysis involves the transformation of a generally dependent,

random vector X into an independent, standardized normal vector u. For example, the Rosenblatt

transformation has been suggested when the joint distribution is available [ 1, 2]. If only the marginal

distributions and the covariances are known, a transformation can be made to generate a joint normal

distribution that satisfies the given correlation structure [3].

By transforming g (X) to g (u), the most probable point (MPP) in the u-space, u', is the point

that defines the minimum distance, [3, from the origin to the limit state surface, see Fig. I. This

point is most probable (in the u-space) because it has a maximum joint probability density on the

limit-state surface.

The MPP (also called design point) is the key approximation point for the FPI analysis. The

MPP can be obtained by formulating an optimization problem and by using proper optimization

methods. If a performance function is defined implicitly and requires computer-intensive analysis,

the procedure for identifying the MPP is critical. An effective procedure is proposed in Ref. [4]

for such problems.
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Joint ProbabiUt_Dee_

g=O

Figure 1. rllustration of a Most Probable Point (MPP)

Typically, the g(u) or g(X) function is approximated by a polynomial function that

approximates the true function in the vicinity of the most probable point. Once the approximate

function is obtained, the associated failure probability can be easily computed. If the g(u)

formulation is used, several analytical solutions are available for linear and quadratic g (u) functions

[5]. For example, the first-order reliability method (FORM) estimate is:

P0¢ < 0) = _) (3)

and the asymptotic second-order reliability method (SORM) estimate, derived by Breitung [6], is:

_--I

e(8 _ o) =_(-_) H(I + _:_)-'_, _ _0. (4)
j-I

where (i)(-) is the cdfofa standard normal distribution and ic_. j = l ..... n - I are the main curvatures

of the limit-state surface at u'.
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Because the errors in an approximated g-function tend to be small around the more significant

probability region, a fairly accurate solution may be achieved provided that the g --0 surface is

"smooth" and can be approximated by a quadratic surface in the u-space. This approach has been

widely used for structural reliability analysis. However, when the approximate linear or quadratic

g-functions involve non-normal random variables, no general closed form solutions are available.

Although approximation methods have been developed (e.g., see Ref. 7), the accuracy tends to

deteriorate when significantly non-normal variables are involved.

Fast Convolution Methodology

This section describes how to use the MPP to establish a linear or a quadratic polynomial and

perform a transformation to linearize the quadratic function. Once the function is linearized, the

convolution theorem and a FFF scheme can be applied to compute efficiently the probability.

Establi._h Linear or Ouadratic Functions

The advanced mean value iteration algoritinn leads to a most probable point. Based on the

MPP, a first Orsecond-order approximation function can be established in either the u- or theX-space

using numerical differentiation methods or least-square curve-fitting methods. The minimum

number of g-function calculations for establishing the first-order function is (n + i). A quadratic

function without mixed or cross-product terms requires a minimum of (2n + 1) function calculations.

A full second-order function requires at least (n + 1) • (n + 2)/2 function calculations.

Linearize Ouadratic Functions

Based on the FPI concept, a method for linearizing quadratic Z-functions is described in Ref.

[7]. A summary is described herein.

The f'LrStstep is to approximate the Z-function by a second-order polynomial using Taylor's

series expansion at the MPP, x',

n

z(x)= E a,(x,-.,::)+b,(xi-x:)2 (5)

where a_and b_arecoefficients.Afterrearrangingterms,

Z(X) = _ ---+ b: Xi- .ri- (6)
;., 4b; ,_,

which may be transformed to a linear form
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where

Z(Y)=Co + _ c, Yi (7)
i,.l

• al 2

Eq. (8) defines the transformation from X; to Yi, where Y_ is a function of X_ only. Thus,

Z(Y) =0 is linear; Y:s are independent ffXi's axe independent. Given the pdf of Xi, the pdf of Y_

can be easily computed.

• A quadratic equation can be established by a least-square method. If proper data are used, this

method could reduce the error due to the exclusion of the mixed terms.

• In some cases, a log-transformation, i.e., X: = lnXi, for some or all of the X:s may be prefen'ed.

Further discussion can be found in Ref. [7].

Eq. (5) does not involve mixed terms. However, in the u-space, the mixed terms effect can be

included by the following procedure (Ref. 8). Let a full quadratic function be computed in the

u-space at the design point u* as follows:

g(u) =g(u*)+i_._lc,(u_-u;)

 gfu), .
,-.(",-",)

i-. 1+2 _...[(u,-u:.)(ui-u')] =0 (9)
i-l j-i÷l ouiauj - J

or,inmatrixnotation,aftersome arrangements:

g(u) = 2g (u*) + 2g_(u - u*) + (u - u*)rG,(u - u*) = 0 (10)

where g, is the first-order gradient vector, and G, is the second-order derivatives matr_. This

equation can also be rewritten as follows:

g(u) = u*r(G.u * - 2,_¢.)+ 2ur(g. - G,u*) + urG, u = 0 (11)

To eliminate the mixed terms, apply a rotational transformation
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u - Rv (12)

where the vector v represents new standardized normal variables, R is the modal matrix for G,, and

R. R r = I (identity matrix). G, can be represented as follows:

G, -" RAR r (13)

where A is the diagonal matrix of the eigenvalues of G,. By substituting Eq. 12 into Eq. 11, Eq.

11 becomes

g(v)- v*r(Av * - 2g,) + 2vr(g, - Av*) + vTAv = 0 (14)

Thus there are no mixed terms in the v-space. If G, is regular, the eigenvalues, _, i - 1, 2,..., n

must not all equal to zero. In this case, Eq. 14 can be written as

g(v)=So+ X x,(v,-s,):=o 05)
iml

where _, i = 0, 1, 2,..., n are constants.

If G, is singular, then one or more eigenvalues, _., i "- 1, 2,.. -, m are equal to zero. Eq. 14

becomes a cylindrical equation as follows:

g(v)=So+ v'z.,=0 (16)
iml i,,m4, I

where v' represents those components that have _. = 0, and g,_ is the first-order gradient vector.

Once Eq. 15 or Eq. 16 is obtained, they can be linearized using the procedure described in Eqs.

5 to 8. This procedure uses a full second-order function in the u-space to produce an exact SORM

solution. The Breitung's SORM solution (Eq. 4) is an approximate SORM solution because it is

based on a parabolic approximation function which is obtained by a rotation of the u-axis followed

by an orthogonal transformation.

Fast Convolution

Assuming that the Z function has been linearized and propedy scaled such that it can be

expressed as:

Z(X) = _ X, (17)
iml

The characteristic function of a random variable X is:
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7
Hx(¢o ) = J.. fx(x)em'dx (18)

which is the Fourier transform of the pdf, fx(x). It is also known that the characteristic function of

a sum of independent random variables equals the product of the characteristic function, i.e.,

n

Hz( o)= 11Hx,(O)
i-I

Equation (19) is useful

therefore, is particularly convenient for large n. The pdf of Z is

(19)

because it does not involve multiple (nested) integrations, and

fz(z) = Hz(o )e- "do (20)
4

from which the cdf can be computed.

Although one can use numerical integration based on Eqs. (19) and (20), computational time

can be substantially reduced by applying a discrete FFT scheme. This allows quick design analysis.

In particular, the efficiency facilitates probabilistic sensitivity analysis in which the significance of

each random variable to the performance cdf is evaluated by changing the distribution parameters

(e.g., mean and standard deviation). To implement the fast convolution method, the range and flae

number of points for FFT must be carefully considered.

EELIhuI 

In applying a FFT technique [e.g., see Ref. 9], each pdf can be considered as a time varying

"signal." Because in FFT each signal is treated as periodic, the range (signal length) must be wide

enough to avoid the wrap-around phenomena. Consider a Z-function: Z = X: + X2. In Fig. 2, the

two pdf's have ranges R: = B and R,. = D. If the FFT range, R,, is less than R: + R2, the resulting

pdf for Z would be incorrect because of the periodic assumption in FFT. This means that the

minimum range is

R, = _ R i (21)
i-I

where each R_ is a range that "sufficiently" defines the pdf. Because a large Ro means that more

points are required to model the pdf shape sufficiently, R, should be chosen as small as possible to

maximize the computational efficiency.
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Referringto Fig. 2, therangemaybereducedif thetwo signalsareshiftedsuchthat A = 0

and C = 0. This impfies that the bounds must be def'med f'trst. One way of defming bounds is to

truncate the distribution at both tails using a probability tolerance, _. For each random variable X_,

the lower bound (x_ and upper bound (x_u) are def'med as

1.0 - Fxflx, v) < IE, ( Right tail)

Fx,(x_.)< _, CLefttail) (22)

A B

X1

I i | m

I I

| I | I i i I J

A+C B+D

Figure 2. Selection of Range For FFT

Because there is no "signal" before xa., the following transformation can be performed to

allow each signal to start at "time" zero.

Y,.=X; -xiL (23)

The new pdfis truncated and ranges from 0 to Ri =._'_c,--__t.- Define a new performance function

Z' as"

Z' : Z Y, : gX;- gx_ = Z - Zx., (24)
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Using the Z' coordinate, the FFT range becomes:

Ro = i xiu- x_
i-I

(25)

In defining the bounds, the tolerances _ should be selected such that the resulting error due

to the truncations is sufficiently small. Probability error bounds can be computed by summing

relevant tail probabilities. In evaluating the entire cdf involving a large n, the total range based on

Eq. (25) may be too wide. To minimize the FFT range, the following strategy can be used.

Consider a probability of failure analysis in which pf is small (say, pf < 0.1). In such a case,

the range can be substantially reduced. Let g =Z'-z', where z" is a value at the left tail of Z"

computed based on Eq. (24) and z. A conservative range is

Ro = n z" (26)

This is because all Yi are positive and any Iri> z' would not contribute to [g < 0]. The FFT

range based on Eq. (26) is relatively narrow because usually z' _: Ri.

The above strategy can also be applied when Fz(z) is large (near 1). In such a case, a new

Z-function should be defined as Z" = -Z and Fz.(z) = I - Fz(z) (a small probability) is calculated

using the FFT technique.

IfR_ < z', the FFT range can be reduced, ftmher, to:

n

Ro = _ min.(R,,z') (27)
i,,l

FFT Pom 

The number of FFT points,Np, should be largeenough to describethe shape of the pdf's

sufficiently.In general,thenumber ofpointsused forany variable,withineach range R, should

be greaterthana minimum number, i.e.,

N: > Nt (28)

If any one of the variables violates the above requirement, the total number of points should

be increased. However, the minimum number Nm, is related to the shape of the pdf and the machine

accuracy and cannot be generalized. A more convenient approach is to. beginning with a small

number (say, 128), repeatedly double the number of points until the solution converges to within a

tolerance.
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Illustration Example

To illustrate the above procedure, a simple strength-stre_ (R-S) problem is used. The

Z-function is:

Z(X) = R-S

The random variables are independent with the following distributions:

R ~ Normal (mean = 25 ksi; std. dev. = 4.)

S ~ Normal (mean = 10 ksi; std. dev. = 3.)

The step-by-step procedure for obtaining the cdfofZis illustrated using Fig. 3 and described

as follows:

1. Obtain a linear performance function, Z, such that,

z x) = z,
i-!

.

where _ are

X ! = R - Normal (25., 4.)

X2 = --S - Normal (-!0, 3.)

Define the range for each X_ using £_= 104. The results are shown in Table 1.

Table I

Random variable Lower bound Upper bound Range

Xz 2.552 47.448 44.896

X2 -26.836 6.836 33.672

. Perform transformation of the random variables(Eq. 23):

4. Define the new function Z':

Z' =Z- _ x_ =Z+24.284

.

iml

The FFT range for calculating the cdf of Z' is

R o = _ R, = 78.568
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Figure 3. Illustration of the Fast Convolution Procedure
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6. Select the nurnber of points. As an inifialtry, useNp= 128.

= 55. (InFig.3,Np = 32 isused.)

7. Perform discrete FFF for each Y;

8. Multiply the resulm from step 7.

9. Perform an inverse FFF to obtain the pdf of Z'.

10. The pdf of Z is calculated based on

Z = Z'-24.284.

This results in NI = 74 and ?/2

Numerical Examples

A computer program was developed that implements the above analysis procedure. Seven

sample problems used to test the capability of the proposed procedure are presented below. To

simulate complicated structural reliability problems, we assume that the g-functions are not known

explicitly and are "defined" in computer programs.

Once the MPP is identified, the second step is to calculate the probability of failure, p# by

using several methods including the fast convolution method (FCM). A full, second-order

g-function in the u-space and a partial quadratic g-fimction in the X-space are generated whenever

applicable. Monte Carlo (MC) solutions based on the exact g-fimctions are generated for

comparisons.

The g-functionis

g(X) = R-L-D

in which R, L and D are random variables having the following distributions (mean, standard

deviation):

R - Weibull (50, 5)

L - Type I asymptotic extreme (I0, 2)

D - Lognormal (20.223,3.033)

The reliabilityanalysisresultsusingseveralmethodologies aresummarized inTable 2. Since

the limitstateislinearintheX-space, thefastconvolutionmethod intheX-space should produce

an "exact"solution.The resultsindicatethatallthemethods produce good solutionsexceptFORM.

Table 2. ReliabilityResultsof Example I
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Me_od

Probability

of failure

FORM

2.693e-3

SORM

(Breitung)

3.502e-3

FCM

(u-space)

3.510e-3

FCM

(X-space)

3.571e-3

Exact

(MC)

3.558e-3

The g-function, taken from Ref. I, is:

g(X) --YZ-M

in which the three independent random variables have the following distributions:

Y ~ Lognormal (mean = 40 ksi; Coy = 0.125)

Z - Lognormal (mean = 50 inS;Cov= 0.05)

M - Type I EVD (mean = I000 in-kips;Coy = 0.2)

The reliabilityresultsare summarized inTable 3. The resultsagain indicatethatallthe

methods are good except FORM.

Table 3. Reliability Results of Example 2

Method

Probability

of failure

FORM

3.051e-3

SORM

(Breitung)

3.095e-3

FCM

(u-space)

3.146e-3

FCM

(X-space)

3.136e-3

Exact

(MC)

3.129e-3

The g-function is:

g(X) -- X_ +X 2- 8.7577

in which the two independent random variables have the following distributions:

Xt ~ Normal (mean = 10; Coy = 0.30)

X2 ~ Normal (mean = 10; Coy = 0.30)

The reliability analysis results are summarized in Table _t Since the g-function is quadratic,

the FCM method should produce an "exact" solution. The results indicate that SORM (Breitung)

is less accurate because of the parabolic approximation.
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Table 4. Reliability Results of Example 3

Method

Probability

of failure

FORM

l.lle-3

SORM

(Breitung)

8.42e-4

FCM

(u-space)

6.89e-4

FCM

(X-space)

6.89e-4

Exact

(MC)

7.04e-4

This example represents one of the problems for which the mixed terms are important. The

g-function is:

g(x) = + 2x,x, + x, +

in which the two independent random variables have the following distributions:

Xt - Normal (mean = 10; Coy = 0.50)

X2 - Normai (mean = 10; Coy = 0.50)

The reliability analysis results are summarized in Table 5. The results indicate that FCM

(X-space) produces substantial error. The reason is because the mixed terms are neglected. Fig.

4 shows the substantial error in the incomplete (without mixed terms) quadratic function in the

u-space. The FCM (u-space) produces near exact solution because the g-function is quadratic

in the u-space. The FORM solution is the worst, while the SORM (Breitung) solution is good.

Table 5. Reliability Results of Example 4

Method

Probability

of failure

FORM

2.339e-3

SORM

(Breitung)

3.653e-4

FCM

(u-space)

3.248e-4

FCM

(X-space)

1.201e-4

Exact

(MC)

3.304e-4
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This example represents one of the problems for which the normal transformation distorts

the original limit state drastically such that the quadratic limit state is not a good approximation.

The g-function is:

g(X) =R -S

where

R ~ Lognormal (mean = 20; Cov = 0.25)

and S has a bi-modal pdf defined as:

where

(_, o,, _, o2) = (10, 2, 40, 2)

The reliability analysis results are summarized in Table 6. Fig. 5 shows the exact limit

state and the full second-order approximation in the u-space. The FCM (X-space) method

produces near exact solution because the g-function is linear. The results suggest that the

g-function in the u-space cannot be adequately approximated by a quadratic function because of

the nonlinear normal transformation.

Table 6. Reliability Results of Example 5

Method

Probability

of failure

FORM

1.567e-2

SORM

(Breimng)

1.517e-2

FCM

(u-space)

1.507e-2

FCM

(X-space)

2.347e-2

Exact

(MC)

2.307e-2

The limit-state function, taken from Ref. 10, is:
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Fig. 5. Illustration of Exact and Approximate

Limit States for Example 5

g(x) = c -x,-x_=o

in which C is a constant and Xt and X2 are exponentially distributed with cdf's of

Fx,(xl)= l-e -_' i=1,2

The coefficient of variations are 100% for both X_. The p! results are shown in Table 7 in

which FORM is the result of the first-order reliability method [1, 2], pf= q_('-O), where q_(. ) is the

standard normal cdf and [3 is the minimum distance described earlier.

Table 7A Reliability Results of Example 6 (C = 11 )
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Method

Probability

of failure

FORM

9.191E-5

Table 7B

SORM

(Breitung)

2.1898E-4

FCM

(u-space)

2.233E-4

FCM

(X-space)

2.036E-4

Reliability Results of Example 6 (C = 13)

Exact

(MC)

2.018E-4

Method

Probability

of failure

FORM

1.359E-5

SORM

(Breitung)

3.502E-5

FCM

(u-space)

2.701E-5

FCM

(X-space)

3.184E-5

Exact

(MC)

3.234E-5

The FORM result is poor because the random variables are significantly non-normal. The

convolution approach inX-space, in theory, should produce an exact solution because the g-function

is linear.

This problem represents one of the conditions for which the FORM approximation is totally

unsatisfactory. The limit state, taken from Ref. 10, is a hyper-sphere:

2R2=,; +...+,.

where allu:s arestandardnormal variates.The minimum distanceistheradiusofthehyper-sphere,

R. Using the transformation:

the limit state can be linearized as:

Yi=u 2

g(_ =R 2-)', - ]',-... -r. = 0

where each Yi is a cld-square distributed variable with one degree of freedom. The exact solution

is:

p:= l- _(R')

where Z_(') is the cdf of the chi-square distribution with n degrees of freedom. The pf results for

n = 5 are shown in Table 8.

Table 8A Reliability Results of Example 7 (R = 4)
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Method

Probability

of failure

FORM

5.965E-4

SORM

(Breitung)

2.909E-2

FCM

(u-space)

1.807E-2

FCM

(X-space)

6.574E-3

Exact

(MC)

6.8E-3

Table 8B Reliability Results of Example 7 (R = 5)

Method

Probability

of failure

FORM

6.234E-6

SORM

(Breitung)

9.758E-4

FCM

(u-space)

5.256E-4

FCM

(X-space)

1.395E-4

Exact

(MC)

1.4E-4

Only the fast convolution (X-space) approach produces good solutions.

Summary and Discussions

As demonstrated, the proposed procedure is capable of producing "exact" solutions for highly

non-normal distributions or non-standard distributions (e.g., bi-modal distribution). The

convolution procedure in combination with the fast probability integration concept provides a useful

tool for probability analysis. The major source of errors in the proposed procedure is in the

approximate performance functions. The fast convolution method is capable of producing "exact"

solutions for quadratic g-functions. However, it should be emphasized that the convolution solution

is only as good as the approximate g-functions in either the u- or the X-space.

In general, normal transformation (i.e., from X to u) tends to introduce nonlinearity into the

limit state. Therefore, when highly non-normal (e.g., bi-modal distribution) random variables are

involved, it is desirable to use g(X) approximation. However, since the second-order mixed-terms

cannot be included for fast convolution analysis, significant errors due to the neglected mixed-terms

may be possible for some highly nonlinear g(X) functions. When the random variables are not

highly non-normal, full quadratic g(u) approximate functions are recommended. Additional

research is desired to develop a method to include the mixed-terms effect (in the X-space) in the

fast convolution analysis framework and to develop a method for selecting g(X) or g(u)

approximations.

Based on numerous test examples, we found that the numerical errors are typically less than

1% using a VAX 8700 machine which has 16 decimal digits precision. To investigate the accuracies
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that can be achieved at the extreme tails of the cdf, a CYBER 175 machine which has 32 decimal

digits precision was used. It was found that the range of accurate calf values extends from u = + 5

to u = + 7 (u is a standard normal variate). The required CPU time is in the order of 10 seconds.
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The sensitivity calculations required for probabilistic analysis are performed using a complete

reanalysis procedure. Many methods exist that are relatively more efficient than the present approach;

however, the reanalysis procedure used in the present version of PBEM is relatively simple, easy to

implement, and easily adaptable with the new versions of BEST3D.

The present version of PBEM is capable of performing sensitivity analysis for all types of problems

that BEST3D can handle including materially nonlinear problems. In the appendix, detailed

documentation on how to use PBEM in performing a perturbation analysis is presented.

A typical input data set for PBEM has the following features.

1. Deterministic dam set-same as the BEST3D data set.

2. The deterministic data set should be terminated by *PROB option, to indicate the starting of

probabilistic data set.

3. Definition of the random variables.

4. Definition of the perttubations.

The data set has similar options as in PFEM.

*PROB

This card should be used before the probability data deck to indicate the stating of probability data.

*DEFINE

This option is used to define the random variable (in terms of the number assigned to a random variable),

and it should be followed by the statements giving the mean and standard deviation, and the description
of the random variables.

The input format for defining a perturbation variable is as follows

*DEFINE jpvar

dmean dstdev

°.s°**°..°°.oo

...°.°°°o°°.°°

•.datablock..

Where

jpvar
dmean

dstdev

CNTL

Data block

is the perturbation variable number.
is the mean value of the random variable.

is the standard deviation of the random

variable.

is the actual case control card of BEST3D to

recognize the perturbation variable type.

is a block of data specifying actual

perturbations, and depends on the type of

perturbation. The following section gives the

details about these options.

The first set of definitions required for defining the perturbations is the case control card of BEST3D.

They could be any one of the following for a perturbation number.

BCSE for boundary conditions perturbation.

PRECEDING PAGE BLANK NOT FILterED
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MATE for material data input perturbation.

BODY for body force perturbation.

GMR for geometric perturbations.

Two more parameters following the case control card should be given to specify the ID number of the

case control card (body force, boundary conditions, material property, and GMR) and type of boundary

conditions or modules or body force parameters (as in cenerifugal acceleration etc.)

Boundary Condition Perturbations:

ID idno

type num
T tl vl v2 .. vn

Tt2vl v2..vn

idno

nurn

tl,t2

vl,v2..

is the actual boundary condition type, DISP, TRAC, FLUX,
or TEMP.

is the component number of the DISP or TRAC, and blank
for FLUX and TEMP.

time steps at which the boundary conditions are

specified.
are the rate of change of boundary condition for

specified node locations ( equ/valent to the boundary
conditions in BEST3D)

T Signifies (as in BEST3D) the actual starting of the

specified boundary condition.

Identification of the B.C. type:

DISP displacement specified.

TRAC traction specified.
FLUX flux boundary condition specified.

TEMP Te_ boundary condition specified.

Example:

*DEFINE 1

100.0 I0.0

BCSE

ID ENDload

DIS 3

T 1 1.0 0.5 0.1

..!

..2

..3

..4

..5

..6

Variations in the Material Pmvertv In_nutS;

The same variable names as in BEST3D are employed for this purpose.

EMOD Young's Modulus.
POIS Poisson's ratio.

ALPH Coefficient of thermal expansion, ff thermal

body force exists.

DENS Density: ff inertia and centrifugal body

forces are specified in the deterministic
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ORIE

Example:

*DEFINE 3

3.e407, l.e+5

MATE

ID MAT1

EMOD 1.0 0.80.l

input.

for perturbations in anisotropic material

property.

Material Orientation for anisotropic problem.

..1

..2

..3

..4

..5

Where the Young's modulus is specified at three different temperatures. Similarly, the anisom_pic

constants and material orientation properties should be specified. The statement number ..5 is to be

changed depending upon the type of variable (Ref. BEST3D use_ manual).

Variation of Body Force Parm_m,s.

In BEST3D, the following notations are used for identifying the body
force type, which is continued in PBEM.

CENT Centrifugal force.
INER Inertia force.

THER Thermal body forces.

Body Force Perturbation Types;

DIRE Direction of axis of rotation or acceleration.

SPEE Speed for centrifugal body force.

ACCE Acceleration due to gravity.

GMR Identification of GMR for thermal input. This card

should be followed by the perturbation to nodal

temperature and used only in conjunction with THER_M
bodyforce.

Example :

*DEFINE 1

100. 10.

BODY

ID CENT

DIRE 0.0 0.0 1.0

The last statement above gives the rate of change of direction cosines as the perturbation type. Similarly
for DIRE, SPEE, and ACCE, the rate of change is prescribed in a format similar to the deterministic
data set.

The format of the above input statements should be changed as follows for the thermal body force.

ID GMRI

TEMP

nltl t2 t3..

n2 ......o.°
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Where GMR1 is the region for which temperature is specified, nl, n2 are the node numbers, and tl, t2,

and t3 are the temperatures at three different time intervals.

Geometric Variations:

In any perturbation, only nodal coordinates of a GMR (A BEM zone used in BEST3D) are pemu_d.

Hence, it is sufficient to provide the rate of change of nodal coordinates values in a format similar to
the deterministic data set.

Example :

*DEFINE 2

100. 10.

GMR

ID GMR1

POINTS

l 0.01 0.01 0.0

2 0.0 1.0 0.0

ooo.oo..

.o°°..oo

n xll x21 x31

where

n

xlL x21 and x31

node number

rate of change of nodal coordinates for design

change.

*PERTURBATION

This is similar to PFEM.

*PERT jpert

jpvarl shiftl

This option is used to define a perturbed problem, conslructed by prescribing small changes to one or

more perturbation variables.

jpert

jpvarl
shiftl

corresponds to the perturbation number.
is the random variable number.

is the number of standard deviation by which the

jpvarl is changed.

Exarap)e:

*PERT 3

30.01 1

The above statements indicate that the third perturbation involves a change of 0.01 standard deviation

in design variable number 3.

*END

This is a card required for indicating the end of perturbation information data deck for PBEM.

Performing MVFO and AMVFO Using PBEM: (*MOV)
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The present version of PBEM requires the manual development of FPI input deck for a particular

performance variable, unlike the PFEM. This, howev_, is not the case with advanced mean value

method. Once the mean value analysis is performed the solution for AMVFO can be found automaticaUy
by executing the MOV.EXE file. MOV.EXE file is written exclusively for reading the information from

FPI.MOV file and moving the design points accordingly in the BEST3D input deck, and solving for
the new value of the performance function for a particular probability level.
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Analysis Type Help Sozl4_

This option defines the analysis solution points and is specified to FPI with

the *ANALTYPE keyword in the parameter data. Several ways of selecting the

solution points are available. Note, the minimum probability level for which

FPI will obtain a solution is -5 standard deviations; the maximum is +5

standard deviations.

Entire CDF (*ANALTYPE - 0)

FPI will perform a search procedure in an attempt to locate points spanning

approximately -5 to +5 standard deviations. 9, 10 or 11 points will be chosen

and results will be chosen for these points. The points will be approximately

equally spaced along the response (or z) axis.

This search procedure can be time consuming and can sometimes cause numerical

errors. If difficulties arise with this method the user should choose the

Zlevel procedure (*ANALTYPE - 1).

This method can be used with Monte Carlo (*METHOD - 6), but not with

importance sampling (*METHOD - 5,7).

Plevels (*ANALTYPE - 2)

FPI will compute the solution at user-specified probability levels. The

probability value is entered in linear (0 to 1.0) format. When using this

format, FPI first performs a search in order to span the specified range of

probability. FPI then uses curve fitting to estimate the response

corresponding to the specified probability. FPI then runs a Zlevel procedure

at the predicted response value. If the predicted probability in terms of U

is within .1% of the specified value, FPI proceeds to the next P level. If

the predicted probability is not within .1%, FPI iterates until convergence.

This procedure is very similar to computing the entire CDF; therefore, this

search procedure can also be time consuming and can sometimes cause numerical

errors. If difficulties arise with this method the user should choose the

Zlevel procedure (*ANALTYPE - 1).

This selection method cannot be used with Monte Carlo.

Zlevels (*ANALTYPE - 1)

FPI will compute the solution at user-specified response levels (Z values).

In contrast to the other two analysis selection methods, FPI will still

estimate the probability level even if it is outside -5 to +5 standard

deviations up to -10 to +10 standard deviations.

PF_--:?EP!.r;:3 P._GE B!.ANK I'_vT FILMED
341



This is the failsafe procedure for operating FPI and should be used when

others fail.

This method can be used with Monte Carlo with importance sampling (,METHOD -

5,7) but not conventional Monte Carlo (*METHOD - 6).

Con£1denQe Interval Help 8Qz_en

Confidence intervals can be obtained on the CDF. These confidence intervals

are with respect to uncertainties in the underlying parameters of the random

variable statistics. Thus, if there is some uncertainty in the mean and

standard deviation of a random variable, the uncertainty can be entered in the

form of a coefficient of variation of the mean and standard deviation. 90%

and 95% confidence limits will be obtained. The number of samples points to

use for determining the confidence intervals is reconuuended to be 10,000.

Entizm CDF Help Scz_m

The only option necessary is the FPI parameter data *ANALTYPE - 0. No model

data is necessary. If problems arise using this selection method, try

Zlevels.

G FunationHelp Sazeen

The G function option defines the equation which divides the probability

region into failed and safe regions. There are several options for defining

the G function in NESSUS which can be classified into two types, explicit g

functions and implicit g functions.

Explicitperformance functions, i.e., closed form.

Use *GFUNCTION - 0,10 or 6. The g function must be defined in a user-defined

routines USER or RESPON.

To use subroutine USER, option 0 or 10, the closed form equation must be

written in a special format, x(1) - f(x(2),...,x(n)). If this is not

possible, then option 6, subroutine RESPON, must be used. In our experience,

subroutine USER is the more numerically robust and should be used if possible.

This option is limited to zlevels (*ANALTYPE - 1) analysis only.

Subroutine RESPON, option 6, is more general and allows the user more freedom

in progranening the g function. However, the user should be aware that he must

select distribution parameters for the random variables that make sense or a

numeric error may result. For example, the distribution for Poisson's ratio

should not allow NU to be greater than 1/2 because meaningless results or

program crashes may result. Program crashes such as square root of a negative

number, etc., can often result when using this option, especially when using
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analysis type 0 or 2. If this happens the user should first try a Zlevel

procedure and also examine the input data to see if it is realistic. This

option can be used with analysis selection types 0,1, or 2.

Implicit - *GFUNCTION - 1,2

This option is useful when coupling FPI with other complicated analysis

engines which define the g function such as the finite element method.

The g function is defined by a set of input data points. The data points are

input with the *DATASETS option. FPI performs a regression analysis to

compute a linear, option 1, or quadratic, option 2, g function. The current

version of the code is limited to 100 datasets. Note, for many datasets

regression analysis can be performed outside of NESSUS and the resulting

equation progranuned as an explicit g function. Analysis of implicit g

functions is most accurate when performed within the Advanced Mean Value

algorithm.

Random Va=iable Help 8czmen

The random variable definitions in NESSUS require a mean, standard deviation

and a distribution type. Under NESSUS 4.2, the data is input in two

locations, the *DEFINE card in the FEM input data and the *DEFRANV keyword in

the FPI input data. The random variable definitions between the two keywords

often coincide, but not always. The FEM random variables are limited to FEM

quantities such as properties, pressures, etc. Therefore, the *DEFINE cards

may be intermediate or psuedo random variables. The *DEFRANV random variables

are always the independent random variables.

To assist the user in defining the random variable parameters, a list of

default distribution parameters has been compiled. These can serve as

ballpark estimates if problem specific data is not available.

Plevela help soz_en

The FPI parameter data *ANALTYPE - 2 must be input. The number of probability

levels and their values must be input in the model data section using the

*PLEVELS keyword. If problems arise using this selection method, try Zlevels.

Solution Method Help Sc=een

There are two basic solution methods in NESSUS, fast probability integration

and Monte Carlo. The solution method is selected with the *METHOD parameter

keyword.
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The fast probability integration methods have two options, the first oEder

reliability method, option 0, and the advanced first order reliability method,

option 1. This is more accurate but more time consuming. In addition, for

somo problems numerical errors can arise with this method which don't show up

for the first order reliability method. The advanced method should always be

tried first.

Monte Carlo methods are an alternative solution method. Conventional Monte

Carlo and importance sampling (Harbitz method) are included in NESSUS.

Importance sampling is more efficient for obtaining the probability at a

single response point, but is not designed to compute the entire CDF.

Importance sampling can only be used at specified response levels. If the

entire CDF is desired, conventional Monte Carlo should be used. One solution

strategy is to compute the CDF between -3 to +3 standard deviations with

conventional Monte Carlo and compute selected points in the tails with

importance sampling. Note from the FPI theoretical manual that the efficiency

of importance sampling is very high for few random variables, but degrades

rapidly as the number of random variables increases.

Zlevels help sc_n

The FPI parameter data *ANALTYPE - 1 must be input. The number of response

levels and their values must be input in the model data section using the

*ZLEVELS keyword. This is the most failsafe method.
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There are throe parts of the data docks connected with probabilistic analysis that arc to be

generated by NESSUS/SHELL. One is the deterministic data dock *FEM part two in the input data

dock). The second part is the data deck *PFEM (part one in the input data dock) and the third part

is the data deck *FPI (part throe in the input data dock). The task is to prepare as much of the

probabilistic data deck as possible, using the data dock for the deterministic problem as part fo the

necessary Imowledgo base. The probabilistic data deck is to be inferred from the deterministic data

dock, using the logic of NESSUS and past experience (export knowledge) in creating probabilistic
data decks.

I Part one: the data in *HEM deck

Thispartof the dataisinthe*FEM datadeck. Most of now datastructuresare connected

with perturbation of the random variables. These are:

a. data koyword *PERTURB in parameter data section

b. data keyword *PERTURB in model data section

c. data keyword *DEFINE in model data section

d. data k_yword *MOVE in model data section

o. data koyword *RECORD in model data section

1.1 Keyword *PERTURB in parameter data section

This koyword will dof'mo how many random variables will be taken into consideration and

what is variable. The form of this koyword is as follows

*PERTURB npvar (number of perturbation variables) npert (number of perturbations)
TYPE1 (TYPE of random variable)
TYPE2

.o.=.

TYPEn

where the number of perturbationvariablesand the number of perturbationsmay be input

by users(usuallythe number of perturbationvariablesisnot equal tothe number of TYPE). The

knowledge base system can give a suggestionon the minimum number (thenumber of random

variables)ofperturbations.The number ofperturbationsdepends on thenumber of random variables

and the choiceof FPI method (forfirst-ordermean valuemethod itshouldbe atleastequal to the

number of variables,for second-ordermethod itshouldbe atleastequalto one plustwo times the

number of variables).Selectionof a largonumber of perturbationswillcostmore computer time,

but the resultcould be more accurate.Usuallythefirstorder mean valuemethod willbe used,so

in this system only the first order mean value will be taken into consideration.

The SHELL will def..me all the TYPE of random variables automatically after all random

variables are defined by users. The TYPE quantities which can be selected are controlled by the

type of the problem prescribed in the deterministic data deck. For instance if the problem is a static

analysis, the choice of ACCELERATION, VELOCITY and HARMONIC are not appropriate and

PI:?ECEDING PAGE BLANK NOT FILMED
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will not appear in the choice menu. For two or three dimensionalproblems the choice of

BEAMSECTION, which isonly validfor elemem 98, willnot appear in the choicemenu, etc.

Thus, SHELL can use thepartof the knowledge base representedby thedeterministicdam deck.

In the *PERTURB keyword, there are seventeen TYPE of random variables that may appear
in the choice menu:

ACCELERATION Initialacceleration(dynamic problem ).

BEA_ISECTION Beam sectionproperties(just for beam element ).

COORDINATES Mesh geometry ( any problem ).

DAMPING Damping constants ( dynamic problem with damping option ).

DISPLACEMENT Initialdisplacement ( any problem except eigenvalueproblem ).

DISTRIBUTEDLOAD Element distributedloads ( any problem except eigenvalueproblem ).

FORCES Nodal forces( any problem except eigenvalueproblem ).

HARMONIC Harmonic excitationparameters(dynamic problem with harmonic option!

ORIENTATION Material orientation( any problem ).

PRESSURE Nodal pressures( any problem except eigenvalueproblem ).

PROPERTIES Material properties( any problem ).

PSD Power spectrum excitation( dynamic problem with PSD option ).

SPRINGS Base springstiffness( any problem ).

TEMPERATURE Nodal temperatures ( any problem ).

UPERT

VELOCITY

YIELDFUNCTION Yield functioncurves (plasticproblem ).

User defined loading perturbation ( any problem ).

Initial velocity ( dynamic problem ).

1.2 Keyword *PERTURB inmodel data section

The data in this keyword connected with the data in this keyword *DEFINE will determine

how large the perturbation will be taken. The form of this keyword is

*PERTURB jpert (the perturbation number)
jpvarl (the random variable number) shiR1 (the shiR number)

jpvar2 shift2

o)oo)o

jpvarn shiftn

Usually this keyword can be prepared from the SHELL knowledge base, bemuse the shift

number for the first n perturbations can be set to default value 0.1 for most cases; if the second-order

FPI method is chosen or npert in *PERTURB in parameter section is set larger than the number of

random variables, the shift number in the following perturbations should be set to default value -0.1.

In every perturbationprocessjustone random variableistaken intoconsideration,so thejpertand

jpvarn willjusttakethe serialnumber of random variableor jpertwillbe setto a serialnumber
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largerthanrandom variablesforthe choiceof largernpen in *PERTURB or the second-orderFPI

method.

1.3 keyword =DEFINE inmodel datasection

This datakeyword connectedwith theknowledge base datainkeyword *PERTURB inthe

model datasectionwilldefinehow large the perturbationof the random variableswillbe taken.

Every partof thesedatahas the similarform

*DEFINE jpvar(a serial random variablenumber)

dmean (mean value)dstdev(standarddeviation)

TYPE (seethe Table above)jparam (optionalforsome random variables)

DATA BLOCK (adatablock)

Obviously,allthe mean valuesof therandom variablesand jparam shouldbe thesame asthe

value given for the deterministicproblem. Thus, the mean valueswillcome directlyfrom the

deterministicdatasection.The standarddeviationforevery random variableshouldbe inputby the

usersor specifiedby a defaultvaluedictatedby expertopinion.

The followingtableconcernsthe inputof thedata indatablock

TYPE

ACCELERATION

"BEAMSECTION

COORDINATES

dmea_

k

k

dstdev jparsm

k

k

k

Data Block

P

P

k i p

DAMPING k i k p

DISPLACEMENT k i p

DISTRIBUTEDLOAD k i

FORCES k i

k

k

k

k

k

k

HAP_%[ONIC

ORIENTATION k

P

P

P

P

PRESSURE k i k p

PROPERTIES k i k p

PSD k i k p

SPRINGS k i k p

TEMPERATURE k i k p

UPERT k i k p

VELOCITY k

k

k i

YIELDFUNCTION k i

P

P

k: known from thedeterministicknowledge base

i: useroverrideofdefaultavailable(by inputthevalueof COV)

p: partlyinputby user,usingexpertadvice.

349



The most difficult th'mg is the data block which defines the total change of the random

variable for perturbation, i.e., if the perturbation shift number in "PERTURB keyword is given and

the corresponding number in the data block is k, then the total change for this corresponding variable

will be (k=shift=dsUlev). In most cases the number k will be set to one. But, for the perturbation

of the coordinates, users will be required to input these data.

The format of the data blocks should be predetermined by the format in the deterministic data

deck, users don't need to be asked to input every component data in the data block (most of them

will be set to zero automatically). However the node where this random variable will be perturbed

must be inpute by the user. In general two pieces of information should be inpute by the user in a
block data:

a. the nodes where the random variable will be perturbated.

b. which component in this group of data is random variable.

For instance, if the Poisson's ratio (which is the third component in property data group
*PROPERTY) from node I to node 34 should be perturbed, the following data block will be
generated.

1340.0.1.0.0.0.

and so on (usually the perturbation value is default to all nodes).

Usually the data block under this keyword is the largest data block for probabilistic analysis.

1.4 keyword *MOVE in model section

This keyword is to define a new unperturbed problem, i.e., a new deterministic problem for
which a shift of the perturbed variables will be computed; additional perturbations centered about

the new unperturbed (with the shifted value of random variable) state may be computed.
The formatof thiskeyword is

*MOVE

jpvarl (the number of random variable) shiftl (the shift number)
jpvar2 shift?.

ooo.,o

jpvarn shifm

The shifted random variable will equal to shifl*dstdev. Usually, the user will not use this

keyword. The value of shift could be set to one or be input by the users. If *PFEM module is

included in the input data file, this keyword will be automatically inserted by SHELL.

1.5 keyword *RECORD in model section

This keyword is used to select which results should be stored and/or updated in the NESSUS
perturbation database. It seelns advisable to use the default values (all of the results obtained in the

course of a given run are stored and/or updated in the database).

2 Parttwo: thedatakeyword in *PFEM

Thispartconcernsthedatain=PFEM. Most ofthedataare connectedwiththeperturbation

of therandom variables.The datacan be dividedintotwo groups
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2.1

2.2

2.3

2.4

a. MV analysis(*MVFO)

b. AMV analysis(*AMVFO)

*RESTART

The formatof thisdatakeyword is

*RESTART parameter

where for

parameter ffi 0 (default): no restart, the NESSUS must generate the database.

parameter = 1: FEM database already exits, bypass FEM database generation.

parameter = 2: MV solution already computed. Perform AMV solution directly.
The parameter will be set to the default value of zero.
*DATATYPE

The format is

*DATATYPE parameter

The parameter here specifies the data type to extract
---0 Incremental (dynamic an plastic problem)

--1 Eigenvalue (eigenvalue problem)

-2 Harmonic/spectral (harmonic analysis)

The correct value will be set according to the *PFEM keywords.

*HARM

The format is

*HARM parameterl parameter2

parameterl - beginning harmonic/spectral number of MV analysis (default - 1)

parameter2 -- ending harmonic/spectral number for MV analysis (default --- parameterl)

This is only for harmonic analysis and must be input by users.

*RANVAR

The format is

*RANVAR parameter (the number of random variables)
Varl Var2 ... VarN

The default is to use all random variables-i, n.
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2.5 *RESPTYPE

The format is

*RESPTYPE parameter

This keyword defines the response variable to extract from the data base. It must be input

by the users. The SHELL will give advice m other users about the choice of the parameter (the
physical meaning of the choice).

O1 a total displacement component

02 a total strain component

03 a total stress component

II I a plastic strain component

12 a backs_ress component

13 a creep strain component

14 a thermal strain component

17 a generalized strain component ?

18 a generalized stress component ?
30

31

32

33

35

36

51

52

53

61

62

63

71

72

T3

81

82

83

91

92

93

96

the eigenvaJue for the mode

a modal displacement ( eigenvector ) component

a modal strain component, if available

a modal stress component, if available

the frequency in radian per time

the frequency in cycles per time

a real compenent of the displacement

a real compenent of the strain

a real compenent of the stress

an imaginary compenent of the displacement

an imaginary compenent of the strain

an imaginary, compenent of the stress

the amplitude of the displacement

the amplitude of the strain

the amplitude of the stress

the phase of the displacement

the phase of the strain

the phase of the stress

the mean square value of the displacement

the mean square value of the strain

the mean square value of the stress

a stress velochv value ?
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Descriptionswill replace the numbers shown.

The possible choices will depend on the type of the problem, i.e., not all the choices will be

valid for all tTpos of the problems. For the five different kinds of problems, the following table of

knowledge-based options will be used to provide only those options appropriat_ for the analysis.

STATIC

Ol

02

03

14

DYNAMIC

51

52

53

61

62

63

71

72

73

81

82

83

EIGENVALUE PLASTIC CREEP

30 01 01

31 02 02

32

33

35

36

03 03

11 13

12 17

17 18

18

17

IS

PSD

91

92

93

2.6 *INCR

The format is

*INCR parameterl parameter2

parametcrl = beginning increment number for MV analysis (default = 0)

parameter2 = ending increment number for MV analysis (default = parameterl)

This is for dynamic and plastic analysis and must be input by users or set to the default value of 0.

2.7 *COMP

This defines which component of the response variable will be the function analyzed by FPI.
The form of this data keyword is

*COMP parameterl (begin component) parameter2 (end component)

This data must be input by the user. However, SHELL will give the users information about

the physical meaning of the component according to the parameter selected in *RESPTYPE keyword.

2.8 *MODE

The format is

*MODE pararneterl parameter2
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parameterl = beginning mode number for MV analysis (default = 1)

pararneter2 = ending mode number for MV analysis (default value will be set to 3 by
SHELL)

This is only for eigenvalue analysis and must be input by users.

2.9 *NODE

The format is

*NODE parameter1 parameter2

parameterl = beginning node number for MV analysis

parameter2 = ending node number for MV analysis

2.10 *PERT

The format is

*PERT parameter
Pert1 Pert2 ... PertN

parameter is the number of the perturbations to be extracted and default to all perturbations.

3 Part three: the data keyword in *FPI

A lot of the data in _is part will be obtained from the keyword data defined in the previous
two data sections.

3.1 *RVNUM

The format is

*RVNUM parameter (the number of random variables)

DATA BLOCK (with the mean value, standard deviation and distribution)

The number of random variables will be obtained from *RANVAR in *PFEM deck directly.

The mean value and standard deviation can be obtained from previous input, and users will be
requested to input the distribution of the random variables.

3.2 *GFUNCTION

The format is

*GFUNCTION parameter
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In probabilistic analysis using NESSUS/FEM, the value of the parameter should be set to one

or two, depending on the choice of first or second order. The expert opinion of the FPI author is

one (first order FPI analysis by data set), so the default will be set to one.

3.3 *DATASETNM

The format is

*DATASETNM parameter (the number of data sets)

The default value of the parameter will be set to the perturbation number plus one.

*METHOD

The format is

*METHOD parameter (the option of method)

For FEM analysis the value of the parameter can be selected by the users as 0 (first order
The default will be 1.

3.4

reliability method) or 1 (advanced first order reliability method).

3.5 *ANALTYP

The format is

*ANALTYP parameter (the type of analysis)

The value of the parameter can be selected by the users to be 0 (FPI defined P levels), 1 (Z

levels) or 2 (P levels) by users; the default will be 0.

3.6 *PRINTOPT

The format is

*PRINTOPT parameter

The value of the parameter will be 0 (short print out) or 1 (long print out), with 0 as the
default.

3.7 *ZLEVELS

The format is

*ZLEVELS parameter (the number of Z levels)
zlevell zlevei2 ... zleveln
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3.8

Valid only if ANALTYPE is set to 2.
value -5, -4, -3, -2, -I, 1, 2, 3, 4, 5.

Valid only if ANALTYPE is set to 1. These data should be input by usen.

*PLEVELS

The format is

*PLEVELS parameter (the number of P levels)

plevell plevel2 ... pleveln

These data should be input by users or set to default

3.9 *DEFRANV

The format is

*DEFRANV

namel

mean standard-deviation distribution
name2

mean standard-deviation distribution

namen

mean standard-deviation distribution

All the information here is input by users when the random variables are defined. The

system will supply a default distribution and standard deviation to users based on the expertise
supplied by Prof. Wirsching.
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